NO Prover = TRS(tech=GUIDED_UNF_TRIPLES, nb_unfoldings=unlimited, unfold_variables=false, max_nb_coefficients=12, max_nb_unfolded_rules=-1, strategy=LEFTMOST_NE) ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 7] length(cons(_0,n__zeros)) -> length(cons(0,n__zeros)) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {_0->0}. We have r|p = length(cons(0,n__zeros)) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = length(cons(_0,n__zeros)) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## Round 1: ## DP problem: Dependency pairs = [U11^#(tt,_0) -> U12^#(tt,activate(_0)), length^#(cons(_0,_1)) -> U11^#(tt,activate(_1)), U12^#(tt,_0) -> length^#(activate(_0))] TRS = {zeros -> cons(0,n__zeros), U11(tt,_0) -> U12(tt,activate(_0)), U12(tt,_0) -> s(length(activate(_0))), U21(tt,_0,_1,_2) -> U22(tt,activate(_0),activate(_1),activate(_2)), U22(tt,_0,_1,_2) -> U23(tt,activate(_0),activate(_1),activate(_2)), U23(tt,_0,_1,_2) -> cons(activate(_2),n__take(activate(_1),activate(_0))), length(nil) -> 0, length(cons(_0,_1)) -> U11(tt,activate(_1)), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> U21(tt,activate(_2),_0,_1), zeros -> n__zeros, take(_0,_1) -> n__take(_0,_1), activate(n__zeros) -> zeros, activate(n__take(_0,_1)) -> take(_0,_1), activate(_0) -> _0} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Too many coefficients (80)! Aborting! ## Trying with lexicographic path orders... Too many argument filtering possibilities (243000)! Aborting! ## Trying to prove nontermination by unfolding the dependency pairs with the rules of the TRS # max_depth=3, unfold_variables=false: # Iteration 0: nontermination not detected, 3 unfolded rules generated. # Iteration 1: nontermination not detected, 5 unfolded rules generated. # Iteration 2: nontermination not detected, 21 unfolded rules generated. # Iteration 3: nontermination not detected, 46 unfolded rules generated. # Iteration 4: nontermination not detected, 57 unfolded rules generated. # Iteration 5: nontermination not detected, 16 unfolded rules generated. # Iteration 6: nontermination not detected, 36 unfolded rules generated. # Iteration 7: nontermination detected, 69 unfolded rules generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = length^#(cons(_0,_1)) -> U11^#(tt,activate(_1)) [trans] is in U_IR^0. D = U11^#(tt,_0) -> U12^#(tt,activate(_0)) is a dependency pair of IR. We build a composed triple from L0 and D. ==> L1 = [length^#(cons(_0,_1)) -> U11^#(tt,activate(_1)), U11^#(tt,_2) -> U12^#(tt,activate(_2))] [comp] is in U_IR^1. Let p1 = [1]. We unfold the first rule of L1 forwards at position p1 with the rule activate(n__zeros) -> zeros. ==> L2 = length^#(cons(_0,n__zeros)) -> U12^#(tt,activate(zeros)) [trans] is in U_IR^2. D = U12^#(tt,_0) -> length^#(activate(_0)) is a dependency pair of IR. We build a composed triple from L2 and D. ==> L3 = length^#(cons(_0,n__zeros)) -> length^#(activate(activate(zeros))) [trans] is in U_IR^3. We build a unit triple from L3. ==> L4 = length^#(cons(_0,n__zeros)) -> length^#(activate(activate(zeros))) [unit] is in U_IR^4. Let p4 = [0]. We unfold the rule of L4 forwards at position p4 with the rule activate(_0) -> _0. ==> L5 = length^#(cons(_0,n__zeros)) -> length^#(activate(zeros)) [unit] is in U_IR^5. Let p5 = [0]. We unfold the rule of L5 forwards at position p5 with the rule activate(_0) -> _0. ==> L6 = length^#(cons(_0,n__zeros)) -> length^#(zeros) [unit] is in U_IR^6. Let p6 = [0]. We unfold the rule of L6 forwards at position p6 with the rule zeros -> cons(0,n__zeros). ==> L7 = length^#(cons(_0,n__zeros)) -> length^#(cons(0,n__zeros)) [unit] is in U_IR^7. This DP problem is infinite. ** END proof description ** Proof stopped at iteration 7 Number of unfolded rules generated by this proof = 253 Number of unfolded rules generated by all the parallel proofs = 1608