YES Problem 1: (VAR v_NonEmpty:S X:S) (RULES activate(n__f(X:S)) -> f(X:S) activate(X:S) -> X:S f(0) -> cons(0,n__f(s(0))) f(s(0)) -> f(p(s(0))) f(X:S) -> n__f(X:S) p(s(X:S)) -> X:S ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> F(X:S) F(s(0)) -> F(p(s(0))) F(s(0)) -> P(s(0)) -> Rules: activate(n__f(X:S)) -> f(X:S) activate(X:S) -> X:S f(0) -> cons(0,n__f(s(0))) f(s(0)) -> f(p(s(0))) f(X:S) -> n__f(X:S) p(s(X:S)) -> X:S Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> F(X:S) F(s(0)) -> F(p(s(0))) F(s(0)) -> P(s(0)) -> Rules: activate(n__f(X:S)) -> f(X:S) activate(X:S) -> X:S f(0) -> cons(0,n__f(s(0))) f(s(0)) -> f(p(s(0))) f(X:S) -> n__f(X:S) p(s(X:S)) -> X:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(s(0)) -> F(p(s(0))) ->->-> Rules: activate(n__f(X:S)) -> f(X:S) activate(X:S) -> X:S f(0) -> cons(0,n__f(s(0))) f(s(0)) -> f(p(s(0))) f(X:S) -> n__f(X:S) p(s(X:S)) -> X:S Problem 1: Reduction Pair Processor: -> Pairs: F(s(0)) -> F(p(s(0))) -> Rules: activate(n__f(X:S)) -> f(X:S) activate(X:S) -> X:S f(0) -> cons(0,n__f(s(0))) f(s(0)) -> f(p(s(0))) f(X:S) -> n__f(X:S) p(s(X:S)) -> X:S -> Usable rules: p(s(X:S)) -> X:S ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [p](X) = 1/2.X + 1/2 [0] = 0 [s](X) = 2.X + 2 [F](X) = 2.X Problem 1: SCC Processor: -> Pairs: Empty -> Rules: activate(n__f(X:S)) -> f(X:S) activate(X:S) -> X:S f(0) -> cons(0,n__f(s(0))) f(s(0)) -> f(p(s(0))) f(X:S) -> n__f(X:S) p(s(X:S)) -> X:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.