YES Problem 1: (VAR v_NonEmpty:S X:S Y:S) (RULES activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) ACTIVATE(n__true) -> TRUE F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) -> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) ACTIVATE(n__true) -> TRUE F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) -> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) ->->-> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__f(X:S)) -> F(activate(X:S)) F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) -> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true -> Usable rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = 2.X [f](X) = 2.X + 2 [if](X1,X2,X3) = 2.X1 + 2.X2 + 2.X3 [true] = 0 [c] = 0 [false] = 2 [n__f](X) = 2.X + 1 [n__true] = 0 [ACTIVATE](X) = 2.X [F](X) = 2.X + 2 [IF](X1,X2,X3) = 2.X2 + 2.X3 Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> F(activate(X:S)) F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) -> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__f(X:S)) -> F(activate(X:S)) F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) ->->-> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true Problem 1: Reduction Pair Processor: -> Pairs: ACTIVATE(n__f(X:S)) -> F(activate(X:S)) F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) -> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true -> Usable rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [f](X) = 2.X + 2 [if](X1,X2,X3) = 2.X1 + 2.X2 + X3 [true] = 0 [c] = 0 [false] = 1 [n__f](X) = 2.X + 2 [n__true] = 0 [ACTIVATE](X) = X + 1 [F](X) = 2.X + 2 [IF](X1,X2,X3) = 2.X1 + 2.X2 + X3 Problem 1: SCC Processor: -> Pairs: F(X:S) -> IF(X:S,c,n__f(n__true)) IF(ffalse,X:S,Y:S) -> ACTIVATE(Y:S) -> Rules: activate(n__f(X:S)) -> f(activate(X:S)) activate(n__true) -> ttrue activate(X:S) -> X:S f(X:S) -> if(X:S,c,n__f(n__true)) f(X:S) -> n__f(X:S) if(ttrue,X:S,Y:S) -> X:S if(ffalse,X:S,Y:S) -> activate(Y:S) ttrue -> n__true ->Strongly Connected Components: There is no strongly connected component The problem is finite.