YES Problem 1: (VAR v_NonEmpty:S X:S) (RULES a -> n__a activate(n__a) -> a activate(n__f(X:S)) -> f(X:S) activate(n__g(X:S)) -> g(activate(X:S)) activate(X:S) -> X:S f(n__f(n__a)) -> f(n__g(n__f(n__a))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__a) -> A ACTIVATE(n__f(X:S)) -> F(X:S) ACTIVATE(n__g(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__g(X:S)) -> G(activate(X:S)) F(n__f(n__a)) -> F(n__g(n__f(n__a))) -> Rules: a -> n__a activate(n__a) -> a activate(n__f(X:S)) -> f(X:S) activate(n__g(X:S)) -> g(activate(X:S)) activate(X:S) -> X:S f(n__f(n__a)) -> f(n__g(n__f(n__a))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__a) -> A ACTIVATE(n__f(X:S)) -> F(X:S) ACTIVATE(n__g(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__g(X:S)) -> G(activate(X:S)) F(n__f(n__a)) -> F(n__g(n__f(n__a))) -> Rules: a -> n__a activate(n__a) -> a activate(n__f(X:S)) -> f(X:S) activate(n__g(X:S)) -> g(activate(X:S)) activate(X:S) -> X:S f(n__f(n__a)) -> f(n__g(n__f(n__a))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__g(X:S)) -> ACTIVATE(X:S) ->->-> Rules: a -> n__a activate(n__a) -> a activate(n__f(X:S)) -> f(X:S) activate(n__g(X:S)) -> g(activate(X:S)) activate(X:S) -> X:S f(n__f(n__a)) -> f(n__g(n__f(n__a))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) Problem 1: Subterm Processor: -> Pairs: ACTIVATE(n__g(X:S)) -> ACTIVATE(X:S) -> Rules: a -> n__a activate(n__a) -> a activate(n__f(X:S)) -> f(X:S) activate(n__g(X:S)) -> g(activate(X:S)) activate(X:S) -> X:S f(n__f(n__a)) -> f(n__g(n__f(n__a))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) ->Projection: pi(ACTIVATE) = 1 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: a -> n__a activate(n__a) -> a activate(n__f(X:S)) -> f(X:S) activate(n__g(X:S)) -> g(activate(X:S)) activate(X:S) -> X:S f(n__f(n__a)) -> f(n__g(n__f(n__a))) f(X:S) -> n__f(X:S) g(X:S) -> n__g(X:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite.