YES Problem: fst(0(),Z) -> nil() fst(s(X),cons(Y,Z)) -> cons(Y,n__fst(activate(X),activate(Z))) from(X) -> cons(X,n__from(s(X))) add(0(),X) -> X add(s(X),Y) -> s(n__add(activate(X),Y)) len(nil()) -> 0() len(cons(X,Z)) -> s(n__len(activate(Z))) fst(X1,X2) -> n__fst(X1,X2) from(X) -> n__from(X) add(X1,X2) -> n__add(X1,X2) len(X) -> n__len(X) activate(n__fst(X1,X2)) -> fst(X1,X2) activate(n__from(X)) -> from(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X Proof: Matrix Interpretation Processor: dim=1 interpretation: [cons](x0, x1) = x0 + x1, [n__from](x0) = x0, [fst](x0, x1) = 2x0 + 2x1 + 3, [s](x0) = x0, [activate](x0) = 2x0, [n__add](x0, x1) = 2x0 + 2x1, [0] = 4, [from](x0) = 2x0, [n__len](x0) = x0, [len](x0) = 2x0, [add](x0, x1) = 4x0 + 2x1, [n__fst](x0, x1) = x0 + x1 + 2, [nil] = 2 orientation: fst(0(),Z) = 2Z + 11 >= 2 = nil() fst(s(X),cons(Y,Z)) = 2X + 2Y + 2Z + 3 >= 2X + Y + 2Z + 2 = cons(Y,n__fst(activate(X),activate(Z))) from(X) = 2X >= 2X = cons(X,n__from(s(X))) add(0(),X) = 2X + 16 >= X = X add(s(X),Y) = 4X + 2Y >= 4X + 2Y = s(n__add(activate(X),Y)) len(nil()) = 4 >= 4 = 0() len(cons(X,Z)) = 2X + 2Z >= 2Z = s(n__len(activate(Z))) fst(X1,X2) = 2X1 + 2X2 + 3 >= X1 + X2 + 2 = n__fst(X1,X2) from(X) = 2X >= X = n__from(X) add(X1,X2) = 4X1 + 2X2 >= 2X1 + 2X2 = n__add(X1,X2) len(X) = 2X >= X = n__len(X) activate(n__fst(X1,X2)) = 2X1 + 2X2 + 4 >= 2X1 + 2X2 + 3 = fst(X1,X2) activate(n__from(X)) = 2X >= 2X = from(X) activate(n__add(X1,X2)) = 4X1 + 4X2 >= 4X1 + 2X2 = add(X1,X2) activate(n__len(X)) = 2X >= 2X = len(X) activate(X) = 2X >= X = X problem: from(X) -> cons(X,n__from(s(X))) add(s(X),Y) -> s(n__add(activate(X),Y)) len(nil()) -> 0() len(cons(X,Z)) -> s(n__len(activate(Z))) from(X) -> n__from(X) add(X1,X2) -> n__add(X1,X2) len(X) -> n__len(X) activate(n__from(X)) -> from(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__len(X)) -> len(X) activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [cons](x0, x1) = x0 + x1, [n__from](x0) = x0 + 2, [s](x0) = x0 + 1, [activate](x0) = 4x0 + 1, [n__add](x0, x1) = x0 + x1 + 7, [0] = 0, [from](x0) = 4x0 + 3, [n__len](x0) = x0 + 2, [len](x0) = 4x0 + 4, [add](x0, x1) = 4x0 + x1 + 7, [nil] = 5 orientation: from(X) = 4X + 3 >= 2X + 3 = cons(X,n__from(s(X))) add(s(X),Y) = 4X + Y + 11 >= 4X + Y + 9 = s(n__add(activate(X),Y)) len(nil()) = 24 >= 0 = 0() len(cons(X,Z)) = 4X + 4Z + 4 >= 4Z + 4 = s(n__len(activate(Z))) from(X) = 4X + 3 >= X + 2 = n__from(X) add(X1,X2) = 4X1 + X2 + 7 >= X1 + X2 + 7 = n__add(X1,X2) len(X) = 4X + 4 >= X + 2 = n__len(X) activate(n__from(X)) = 4X + 9 >= 4X + 3 = from(X) activate(n__add(X1,X2)) = 4X1 + 4X2 + 29 >= 4X1 + X2 + 7 = add(X1,X2) activate(n__len(X)) = 4X + 9 >= 4X + 4 = len(X) activate(X) = 4X + 1 >= X = X problem: from(X) -> cons(X,n__from(s(X))) len(cons(X,Z)) -> s(n__len(activate(Z))) add(X1,X2) -> n__add(X1,X2) Matrix Interpretation Processor: dim=1 interpretation: [cons](x0, x1) = x0 + 2x1, [n__from](x0) = x0, [s](x0) = 2x0, [activate](x0) = 4x0, [n__add](x0, x1) = x0 + 4x1, [from](x0) = 5x0 + 4, [n__len](x0) = x0, [len](x0) = 4x0 + 2, [add](x0, x1) = x0 + 5x1 + 4 orientation: from(X) = 5X + 4 >= 5X = cons(X,n__from(s(X))) len(cons(X,Z)) = 4X + 8Z + 2 >= 8Z = s(n__len(activate(Z))) add(X1,X2) = X1 + 5X2 + 4 >= X1 + 4X2 = n__add(X1,X2) problem: Qed