NO Problem: zeros() -> cons(0(),n__zeros()) and(tt(),X) -> activate(X) length(nil()) -> 0() length(cons(N,L)) -> s(length(activate(L))) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> n__zeros() take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X Proof: Matrix Interpretation Processor: dim=1 interpretation: [tt] = 1, [length](x0) = 4x0, [0] = 0, [cons](x0, x1) = x0 + x1, [and](x0, x1) = 4x0 + 4x1 + 1, [take](x0, x1) = x0 + x1, [zeros] = 0, [nil] = 0, [n__take](x0, x1) = x0 + x1, [s](x0) = x0, [activate](x0) = x0, [n__zeros] = 0 orientation: zeros() = 0 >= 0 = cons(0(),n__zeros()) and(tt(),X) = 4X + 5 >= X = activate(X) length(nil()) = 0 >= 0 = 0() length(cons(N,L)) = 4L + 4N >= 4L = s(length(activate(L))) take(0(),IL) = IL >= 0 = nil() take(s(M),cons(N,IL)) = IL + M + N >= IL + M + N = cons(N,n__take(M,activate(IL))) zeros() = 0 >= 0 = n__zeros() take(X1,X2) = X1 + X2 >= X1 + X2 = n__take(X1,X2) activate(n__zeros()) = 0 >= 0 = zeros() activate(n__take(X1,X2)) = X1 + X2 >= X1 + X2 = take(activate(X1),activate(X2)) activate(X) = X >= X = X problem: zeros() -> cons(0(),n__zeros()) length(nil()) -> 0() length(cons(N,L)) -> s(length(activate(L))) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> n__zeros() take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [length](x0) = [0 0 0]x0 [0 0 0] , [0] [0] = [0] [0], [1 0 0] [1 0 0] [cons](x0, x1) = [0 0 0]x0 + [0 1 0]x1 [0 0 0] [0 0 0] , [1 0 0] [1 1 0] [0] [take](x0, x1) = [0 0 0]x0 + [0 0 0]x1 + [1] [0 0 0] [0 1 0] [0], [0] [zeros] = [0] [1], [0] [nil] = [1] [0], [1 0 0] [1 1 0] [0] [n__take](x0, x1) = [0 0 0]x0 + [0 0 0]x1 + [1] [0 0 0] [0 0 0] [0], [1 0 1] [s](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [activate](x0) = [0 1 0]x0 [1 0 1] , [0] [n__zeros] = [0] [1] orientation: [0] [0] zeros() = [0] >= [0] = cons(0(),n__zeros()) [1] [0] [1] [0] length(nil()) = [0] >= [0] = 0() [0] [0] [1 1 0] [1 0 0] [1 1 0] length(cons(N,L)) = [0 0 0]L + [0 0 0]N >= [0 0 0]L = s(length(activate(L))) [0 0 0] [0 0 0] [0 0 0] [1 1 0] [0] [0] take(0(),IL) = [0 0 0]IL + [1] >= [1] = nil() [0 1 0] [0] [0] [1 1 0] [1 0 1] [1 0 0] [0] [1 1 0] [1 0 0] [1 0 0] [0] take(s(M),cons(N,IL)) = [0 0 0]IL + [0 0 0]M + [0 0 0]N + [1] >= [0 0 0]IL + [0 0 0]M + [0 0 0]N + [1] = cons(N,n__take(M,activate(IL))) [0 1 0] [0 0 0] [0 0 0] [0] [0 0 0] [0 0 0] [0 0 0] [0] [0] [0] zeros() = [0] >= [0] = n__zeros() [1] [1] [1 0 0] [1 1 0] [0] [1 0 0] [1 1 0] [0] take(X1,X2) = [0 0 0]X1 + [0 0 0]X2 + [1] >= [0 0 0]X1 + [0 0 0]X2 + [1] = n__take(X1,X2) [0 0 0] [0 1 0] [0] [0 0 0] [0 0 0] [0] [0] [0] activate(n__zeros()) = [0] >= [0] = zeros() [1] [1] [1 0 0] [1 1 0] [0] [1 0 0] [1 1 0] [0] activate(n__take(X1,X2)) = [0 0 0]X1 + [0 0 0]X2 + [1] >= [0 0 0]X1 + [0 0 0]X2 + [1] = take(activate(X1),activate(X2)) [1 0 0] [1 1 0] [0] [0 0 0] [0 1 0] [0] [1 0 0] activate(X) = [0 1 0]X >= X = X [1 0 1] problem: zeros() -> cons(0(),n__zeros()) length(cons(N,L)) -> s(length(activate(L))) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> n__zeros() take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [1] [length](x0) = [0 0 0]x0 + [0] [0 0 0] [0], [0] [0] = [0] [0], [1 0 0] [1 0 0] [cons](x0, x1) = [0 0 0]x0 + [0 1 1]x1 [0 0 0] [0 0 0] , [1 1 0] [1] [take](x0, x1) = x0 + [0 1 0]x1 + [1] [0 0 1] [0], [1] [zeros] = [0] [0], [0] [nil] = [0] [0], [1 1 0] [1] [n__take](x0, x1) = x0 + [0 1 0]x1 + [1] [0 0 1] [0], [1 0 1] [s](x0) = [0 1 1]x0 [0 1 0] , [1 0 1] [activate](x0) = [0 1 0]x0 [0 0 1] , [1] [n__zeros] = [0] [0] orientation: [1] [1] zeros() = [0] >= [0] = cons(0(),n__zeros()) [0] [0] [1 1 1] [1 0 0] [1] [1 1 1] [1] length(cons(N,L)) = [0 0 0]L + [0 0 0]N + [0] >= [0 0 0]L + [0] = s(length(activate(L))) [0 0 0] [0 0 0] [0] [0 0 0] [0] [1 1 0] [1] [0] take(0(),IL) = [0 1 0]IL + [1] >= [0] = nil() [0 0 1] [0] [0] [1 1 1] [1 0 1] [1 0 0] [1] [1 1 1] [1 0 0] [1 0 0] [1] take(s(M),cons(N,IL)) = [0 1 1]IL + [0 1 1]M + [0 0 0]N + [1] >= [0 1 1]IL + [0 1 1]M + [0 0 0]N + [1] = cons(N,n__take(M,activate(IL))) [0 0 0] [0 1 0] [0 0 0] [0] [0 0 0] [0 0 0] [0 0 0] [0] [1] [1] zeros() = [0] >= [0] = n__zeros() [0] [0] [1 1 0] [1] [1 1 0] [1] take(X1,X2) = X1 + [0 1 0]X2 + [1] >= X1 + [0 1 0]X2 + [1] = n__take(X1,X2) [0 0 1] [0] [0 0 1] [0] [1] [1] activate(n__zeros()) = [0] >= [0] = zeros() [0] [0] [1 0 1] [1 1 1] [1] [1 0 1] [1 1 1] [1] activate(n__take(X1,X2)) = [0 1 0]X1 + [0 1 0]X2 + [1] >= [0 1 0]X1 + [0 1 0]X2 + [1] = take(activate(X1),activate(X2)) [0 0 1] [0 0 1] [0] [0 0 1] [0 0 1] [0] [1 0 1] activate(X) = [0 1 0]X >= X = X [0 0 1] problem: zeros() -> cons(0(),n__zeros()) length(cons(N,L)) -> s(length(activate(L))) take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> n__zeros() take(X1,X2) -> n__take(X1,X2) activate(n__zeros()) -> zeros() activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(X) -> X Unfolding Processor: loop length: 3 terms: length(cons(N,n__zeros())) s(length(activate(n__zeros()))) s(length(zeros())) context: s([]) substitution: N -> 0() Qed