YES Problem 1: (VAR v_NonEmpty:S x:S) (RULES cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S ) Problem 1: Innermost Equivalent Processor: -> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: COND(ttrue,x:S) -> COND(odd(x:S),p(p(p(x:S)))) COND(ttrue,x:S) -> ODD(x:S) COND(ttrue,x:S) -> P(p(p(x:S))) COND(ttrue,x:S) -> P(p(x:S)) COND(ttrue,x:S) -> P(x:S) ODD(s(s(x:S))) -> ODD(x:S) -> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S Problem 1: SCC Processor: -> Pairs: COND(ttrue,x:S) -> COND(odd(x:S),p(p(p(x:S)))) COND(ttrue,x:S) -> ODD(x:S) COND(ttrue,x:S) -> P(p(p(x:S))) COND(ttrue,x:S) -> P(p(x:S)) COND(ttrue,x:S) -> P(x:S) ODD(s(s(x:S))) -> ODD(x:S) -> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ODD(s(s(x:S))) -> ODD(x:S) ->->-> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S ->->Cycle: ->->-> Pairs: COND(ttrue,x:S) -> COND(odd(x:S),p(p(p(x:S)))) ->->-> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: ODD(s(s(x:S))) -> ODD(x:S) -> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S ->Projection: pi(ODD) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: COND(ttrue,x:S) -> COND(odd(x:S),p(p(p(x:S)))) -> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S -> Usable rules: odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [cond](X1,X2) = 0 [odd](X) = X [p](X) = 1/2.X + 1/2 [0] = 1 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 2 [true] = 2 [COND](X1,X2) = X1 + 2.X2 [ODD](X) = 0 [P](X) = 0 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: cond(ttrue,x:S) -> cond(odd(x:S),p(p(p(x:S)))) odd(0) -> ffalse odd(s(0)) -> ttrue odd(s(s(x:S))) -> odd(x:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.