YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 27 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 0 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 76 ms] (8) QDP (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: H(c(x, y), c(s(z), z), t(w)) -> H(z, c(y, x), t(t(c(x, c(y, t(w)))))) H(c(x, y), c(s(z), z), t(w)) -> T(t(c(x, c(y, t(w))))) H(c(x, y), c(s(z), z), t(w)) -> T(c(x, c(y, t(w)))) H(x, c(y, z), t(w)) -> H(c(s(y), x), z, t(c(t(w), w))) H(x, c(y, z), t(w)) -> T(c(t(w), w)) H(c(s(x), c(s(0), y)), z, t(x)) -> H(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) H(c(s(x), c(s(0), y)), z, t(x)) -> T(t(c(x, s(x)))) H(c(s(x), c(s(0), y)), z, t(x)) -> T(c(x, s(x))) T(t(x)) -> T(c(t(x), x)) The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: H(x, c(y, z), t(w)) -> H(c(s(y), x), z, t(c(t(w), w))) H(c(x, y), c(s(z), z), t(w)) -> H(z, c(y, x), t(t(c(x, c(y, t(w)))))) H(c(s(x), c(s(0), y)), z, t(x)) -> H(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. H(c(x, y), c(s(z), z), t(w)) -> H(z, c(y, x), t(t(c(x, c(y, t(w)))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 1 POL(H(x_1, x_2, x_3)) = x_1 + x_2 POL(c(x_1, x_2)) = 1 + x_1 + x_2 POL(s(x_1)) = x_1 POL(t(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: H(x, c(y, z), t(w)) -> H(c(s(y), x), z, t(c(t(w), w))) H(c(s(x), c(s(0), y)), z, t(x)) -> H(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. H(c(s(x), c(s(0), y)), z, t(x)) -> H(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = [1/2] POL(H(x_1, x_2, x_3)) = [1/2]x_1 + [1/4]x_2 POL(c(x_1, x_2)) = [1/4]x_1 + x_2 POL(s(x_1)) = [1/2]x_1 POL(t(x_1)) = 0 The value of delta used in the strict ordering is 1/64. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: H(x, c(y, z), t(w)) -> H(c(s(y), x), z, t(c(t(w), w))) The TRS R consists of the following rules: h(c(x, y), c(s(z), z), t(w)) -> h(z, c(y, x), t(t(c(x, c(y, t(w)))))) h(x, c(y, z), t(w)) -> h(c(s(y), x), z, t(c(t(w), w))) h(c(s(x), c(s(0), y)), z, t(x)) -> h(y, c(s(0), c(x, z)), t(t(c(x, s(x))))) t(t(x)) -> t(c(t(x), x)) t(x) -> x t(x) -> c(0, c(0, c(0, c(0, c(0, x))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *H(x, c(y, z), t(w)) -> H(c(s(y), x), z, t(c(t(w), w))) The graph contains the following edges 2 > 2 ---------------------------------------- (10) YES