YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) SemLabProof [SOUND, 185 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) UsableRulesReductionPairsProof [EQUIVALENT, 4 ms] (14) QDP (15) MRRProof [EQUIVALENT, 6 ms] (16) QDP (17) DependencyGraphProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPOrderProof [EQUIVALENT, 0 ms] (20) QDP (21) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPOrderProof [EQUIVALENT, 0 ms] (24) QDP (25) PisEmptyProof [EQUIVALENT, 0 ms] (26) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(a, x), y) -> f(y, f(x, f(a, f(h(a), a)))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(a, x), y) -> f(y, f(x, f(a, f(h(a), a)))) The set Q consists of the following terms: f(f(a, x0), x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x), y) -> F(y, f(x, f(a, f(h(a), a)))) F(f(a, x), y) -> F(x, f(a, f(h(a), a))) F(f(a, x), y) -> F(a, f(h(a), a)) F(f(a, x), y) -> F(h(a), a) The TRS R consists of the following rules: f(f(a, x), y) -> f(y, f(x, f(a, f(h(a), a)))) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x), y) -> F(x, f(a, f(h(a), a))) F(f(a, x), y) -> F(y, f(x, f(a, f(h(a), a)))) The TRS R consists of the following rules: f(f(a, x), y) -> f(y, f(x, f(a, f(h(a), a)))) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(f(a, x), y) -> F(x, f(a, f(h(a), a))) we obtained the following new rules [LPAR04]: (F(f(a, f(a, y_0)), x1) -> F(f(a, y_0), f(a, f(h(a), a))),F(f(a, f(a, y_0)), x1) -> F(f(a, y_0), f(a, f(h(a), a)))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(a, x), y) -> F(y, f(x, f(a, f(h(a), a)))) F(f(a, f(a, y_0)), x1) -> F(f(a, y_0), f(a, f(h(a), a))) The TRS R consists of the following rules: f(f(a, x), y) -> f(y, f(x, f(a, f(h(a), a)))) The set Q consists of the following terms: f(f(a, x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 1 f: 0 h: 0 F: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.1-0(a., x), y) -> F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-1(f.1-0(a., x), y) -> F.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-1(a., x), y) -> F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-1(f.1-1(a., x), y) -> F.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) F.0-1(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) -> F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) F.0-1(f.1-0(a., f.1-1(a., y_0)), x1) -> F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-1(f.1-0(a., x), y) -> f.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-0(f.1-1(a., x), y) -> f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-1(f.1-1(a., x), y) -> f.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.1-0(a., x), y) -> F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-1(a., x), y) -> F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) -> F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-1(f.1-0(a., x), y) -> f.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-0(f.1-1(a., x), y) -> f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-1(f.1-1(a., x), y) -> f.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f.0-1(f.1-0(a., x), y) -> f.1-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-1(f.1-1(a., x), y) -> f.1-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = x_1 + x_2 POL(h.1(x_1)) = x_1 ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.1-0(a., x), y) -> F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-1(a., x), y) -> F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) -> F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) The TRS R consists of the following rules: f.0-0(f.1-1(a., x), y) -> f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F.0-0(f.1-1(a., x), y) -> F.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) Strictly oriented rules of the TRS R: f.0-0(f.1-1(a., x), y) -> f.0-0(y, f.1-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(h.1(x_1)) = x_1 ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.1-0(a., x), y) -> F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) F.0-0(f.1-0(a., f.1-1(a., y_0)), x1) -> F.0-0(f.1-1(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.1-0(a., x), y) -> F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F.0-0(f.1-0(a., x), y) -> F.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 1 POL(f.0-0(x_1, x_2)) = 1 POL(f.0-1(x_1, x_2)) = 0 POL(f.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(h.1(x_1)) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) The TRS R consists of the following rules: f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f.0-0(f.1-0(a., x), y) -> f.0-0(y, f.0-0(x, f.1-0(a., f.0-1(h.1(a.), a.)))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(h.1(x_1)) = x_1 ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) R is empty. The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F.0-0(f.1-0(a., f.1-0(a., y_0)), x1) -> F.0-0(f.1-0(a., y_0), f.1-0(a., f.0-1(h.1(a.), a.))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 POL(a.) = 1 POL(f.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(h.1(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (24) Obligation: Q DP problem: P is empty. R is empty. The set Q consists of the following terms: f.0-0(f.1-0(a., x0), x1) f.0-1(f.1-0(a., x0), x1) f.0-0(f.1-1(a., x0), x1) f.0-1(f.1-1(a., x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (26) YES