YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 27 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) TransformationProof [EQUIVALENT, 0 ms] (11) QDP (12) DependencyGraphProof [EQUIVALENT, 0 ms] (13) QDP (14) TransformationProof [EQUIVALENT, 2 ms] (15) QDP (16) DependencyGraphProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPOrderProof [EQUIVALENT, 182 ms] (22) QDP (23) QDPOrderProof [EQUIVALENT, 106 ms] (24) QDP (25) DependencyGraphProof [EQUIVALENT, 0 ms] (26) AND (27) QDP (28) QDPOrderProof [EQUIVALENT, 7437 ms] (29) QDP (30) DependencyGraphProof [EQUIVALENT, 0 ms] (31) QDP (32) UsableRulesProof [EQUIVALENT, 0 ms] (33) QDP (34) QDPSizeChangeProof [EQUIVALENT, 0 ms] (35) YES (36) QDP (37) UsableRulesProof [EQUIVALENT, 0 ms] (38) QDP (39) QDPSizeChangeProof [EQUIVALENT, 0 ms] (40) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(g(x)) -> G(g(f(x))) F(g(x)) -> G(f(x)) F(g(x)) -> F(x) G(s(x)) -> S(s(g(x))) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) S(x) -> H(0, x) S(x) -> H(x, 0) S(s(s(0))) -> F(s(0)) H(f(x), g(x)) -> F(s(x)) H(f(x), g(x)) -> S(x) G(x) -> H(h(h(h(x, x), x), x), x) G(x) -> H(h(h(x, x), x), x) G(x) -> H(h(x, x), x) G(x) -> H(x, x) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) F(s(s(x))) -> H(x, x) S(0) -> R(0) S(s(s(0))) -> R(s(0)) G(x) -> R(x) S(0) -> P(0) S(s(0)) -> P(s(0)) S(s(s(s(s(0))))) -> P(s(s(0))) P(s(s(0))) -> S(s(s(0))) H(p(x), g(x)) -> P(s(x)) H(p(x), g(x)) -> S(x) S(s(p(p(a)))) -> S(k(p(a))) S(k(p(a))) -> P(p(a)) S(h(r(k(p(x))), r(x))) -> H(r(r(p(x))), k(x)) S(h(r(k(p(x))), r(x))) -> R(r(p(x))) S(h(r(k(p(x))), r(x))) -> R(p(x)) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 9 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> S(s(g(x))) S(s(s(0))) -> F(s(0)) F(g(x)) -> G(g(f(x))) G(s(x)) -> S(g(x)) S(s(0)) -> P(s(0)) P(s(s(0))) -> S(s(s(0))) S(s(s(s(s(0))))) -> P(s(s(0))) S(s(p(p(a)))) -> S(k(p(a))) S(k(p(a))) -> P(p(a)) G(s(x)) -> G(x) G(x) -> H(h(h(h(x, x), x), x), x) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(f(x)) G(x) -> H(h(h(x, x), x), x) H(f(x), g(x)) -> S(x) H(p(x), g(x)) -> P(s(x)) H(p(x), g(x)) -> S(x) G(x) -> H(h(x, x), x) G(x) -> H(x, x) F(g(x)) -> F(x) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) F(s(s(x))) -> H(x, x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule S(s(s(0))) -> F(s(0)) at position [0] we obtained the following new rules [LPAR04]: (S(s(s(0))) -> F(h(0, 0)),S(s(s(0))) -> F(h(0, 0))) (S(s(s(0))) -> F(r(0)),S(s(s(0))) -> F(r(0))) (S(s(s(0))) -> F(p(0)),S(s(s(0))) -> F(p(0))) (S(s(s(0))) -> F(k(0)),S(s(s(0))) -> F(k(0))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> S(s(g(x))) F(g(x)) -> G(g(f(x))) G(s(x)) -> S(g(x)) S(s(0)) -> P(s(0)) P(s(s(0))) -> S(s(s(0))) S(s(s(s(s(0))))) -> P(s(s(0))) S(s(p(p(a)))) -> S(k(p(a))) S(k(p(a))) -> P(p(a)) G(s(x)) -> G(x) G(x) -> H(h(h(h(x, x), x), x), x) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(f(x)) G(x) -> H(h(h(x, x), x), x) H(f(x), g(x)) -> S(x) H(p(x), g(x)) -> P(s(x)) H(p(x), g(x)) -> S(x) G(x) -> H(h(x, x), x) G(x) -> H(x, x) F(g(x)) -> F(x) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) F(s(s(x))) -> H(x, x) S(s(s(0))) -> F(h(0, 0)) S(s(s(0))) -> F(r(0)) S(s(s(0))) -> F(p(0)) S(s(s(0))) -> F(k(0)) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(0))) -> S(s(s(0))) S(s(0)) -> P(s(0)) S(s(s(s(s(0))))) -> P(s(s(0))) S(s(p(p(a)))) -> S(k(p(a))) S(k(p(a))) -> P(p(a)) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule S(s(0)) -> P(s(0)) at position [0] we obtained the following new rules [LPAR04]: (S(s(0)) -> P(h(0, 0)),S(s(0)) -> P(h(0, 0))) (S(s(0)) -> P(r(0)),S(s(0)) -> P(r(0))) (S(s(0)) -> P(p(0)),S(s(0)) -> P(p(0))) (S(s(0)) -> P(k(0)),S(s(0)) -> P(k(0))) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(0))) -> S(s(s(0))) S(s(s(s(s(0))))) -> P(s(s(0))) S(s(p(p(a)))) -> S(k(p(a))) S(k(p(a))) -> P(p(a)) S(s(0)) -> P(h(0, 0)) S(s(0)) -> P(r(0)) S(s(0)) -> P(p(0)) S(s(0)) -> P(k(0)) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(0))))) -> P(s(s(0))) P(s(s(0))) -> S(s(s(0))) S(s(p(p(a)))) -> S(k(p(a))) S(k(p(a))) -> P(p(a)) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule S(k(p(a))) -> P(p(a)) at position [0] we obtained the following new rules [LPAR04]: (S(k(p(a))) -> P(p(0)),S(k(p(a))) -> P(p(0))) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(0))))) -> P(s(s(0))) P(s(s(0))) -> S(s(s(0))) S(s(p(p(a)))) -> S(k(p(a))) S(k(p(a))) -> P(p(0)) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(0))) -> S(s(s(0))) S(s(s(s(s(0))))) -> P(s(s(0))) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(s(s(s(s(0))))) -> P(s(s(0))) The graph contains the following edges 1 > 1 *P(s(s(0))) -> S(s(s(0))) The graph contains the following edges 1 >= 1 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) G(x) -> H(h(h(h(x, x), x), x), x) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(g(f(x))) G(x) -> H(h(h(x, x), x), x) G(x) -> H(h(x, x), x) G(x) -> H(x, x) F(g(x)) -> G(f(x)) F(g(x)) -> F(x) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) F(s(s(x))) -> H(x, x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(g(x)) -> G(g(f(x))) F(g(x)) -> G(f(x)) F(g(x)) -> F(x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_1(x_1) ) = 2x_1 + 2 POL( G_1(x_1) ) = x_1 + 2 POL( H_2(x_1, x_2) ) = x_1 + 2 POL( g_1(x_1) ) = x_1 + 1 POL( s_1(x_1) ) = x_1 POL( 0 ) = 0 POL( f_1(x_1) ) = 2x_1 POL( h_2(x_1, x_2) ) = x_1 POL( p_1(x_1) ) = x_1 POL( a ) = 0 POL( k_1(x_1) ) = max{0, x_1 - 2} POL( r_1(x_1) ) = max{0, -1} The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: g(s(x)) -> s(s(g(x))) s(s(s(0))) -> f(s(0)) f(g(x)) -> g(g(f(x))) g(x) -> h(h(h(h(x, x), x), x), x) h(f(x), g(x)) -> f(s(x)) f(s(s(x))) -> h(f(x), g(h(x, x))) h(p(x), g(x)) -> p(s(x)) p(s(s(0))) -> s(s(s(0))) s(s(0)) -> p(s(0)) s(s(s(s(s(0))))) -> p(s(s(0))) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) s(x) -> h(0, x) s(x) -> h(x, 0) s(0) -> r(0) s(s(s(0))) -> r(s(0)) s(0) -> p(0) s(0) -> k(0) s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) f(0) -> 0 f(s(0)) -> s(0) g(x) -> r(x) g(x) -> k(x) p(s(0)) -> 0 r(s(0)) -> s(0) a -> 0 ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) G(x) -> H(h(h(h(x, x), x), x), x) H(f(x), g(x)) -> F(s(x)) G(x) -> H(h(h(x, x), x), x) G(x) -> H(h(x, x), x) G(x) -> H(x, x) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) F(s(s(x))) -> H(x, x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(x))) -> G(h(x, x)) F(s(s(x))) -> H(x, x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_1(x_1) ) = x_1 + 1 POL( G_1(x_1) ) = x_1 POL( H_2(x_1, x_2) ) = x_2 POL( g_1(x_1) ) = x_1 + 1 POL( s_1(x_1) ) = x_1 POL( 0 ) = 0 POL( f_1(x_1) ) = 2x_1 POL( h_2(x_1, x_2) ) = x_1 POL( p_1(x_1) ) = max{0, -2} POL( a ) = 0 POL( k_1(x_1) ) = max{0, -2} POL( r_1(x_1) ) = max{0, -2} The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: g(s(x)) -> s(s(g(x))) s(s(s(0))) -> f(s(0)) f(g(x)) -> g(g(f(x))) g(x) -> h(h(h(h(x, x), x), x), x) h(f(x), g(x)) -> f(s(x)) f(s(s(x))) -> h(f(x), g(h(x, x))) h(p(x), g(x)) -> p(s(x)) p(s(s(0))) -> s(s(s(0))) s(s(0)) -> p(s(0)) s(s(s(s(s(0))))) -> p(s(s(0))) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) s(x) -> h(0, x) s(x) -> h(x, 0) s(0) -> r(0) s(s(s(0))) -> r(s(0)) s(0) -> p(0) s(0) -> k(0) s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) f(0) -> 0 f(s(0)) -> s(0) g(x) -> r(x) g(x) -> k(x) p(s(0)) -> 0 r(s(0)) -> s(0) ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) G(x) -> H(h(h(h(x, x), x), x), x) H(f(x), g(x)) -> F(s(x)) G(x) -> H(h(h(x, x), x), x) G(x) -> H(h(x, x), x) G(x) -> H(x, x) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes. ---------------------------------------- (26) Complex Obligation (AND) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. H(f(x), g(x)) -> F(s(x)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1)) = [[0A]] + [[-I, -I, 0A]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [1A], [0A]] + [[-I, -I, -I], [1A, -I, 0A], [0A, 0A, -I]] * x_1 >>> <<< POL(H(x_1, x_2)) = [[0A]] + [[0A, -I, -I]] * x_1 + [[0A, 1A, -I]] * x_2 >>> <<< POL(f(x_1)) = [[0A], [0A], [0A]] + [[0A, -I, -I], [1A, -I, -I], [1A, -I, -I]] * x_1 >>> <<< POL(g(x_1)) = [[1A], [0A], [2A]] + [[0A, -I, -I], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [0A], [0A]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[-I, -I, -I], [0A, -I, -I], [0A, -I, -I]] * x_2 >>> <<< POL(0) = [[0A], [1A], [-I]] >>> <<< POL(p(x_1)) = [[0A], [1A], [0A]] + [[0A, -I, -I], [0A, -I, -I], [1A, -I, -I]] * x_1 >>> <<< POL(a) = [[0A], [2A], [0A]] >>> <<< POL(k(x_1)) = [[0A], [0A], [-I]] + [[-I, -I, -I], [-I, -I, 0A], [-I, -I, -I]] * x_1 >>> <<< POL(r(x_1)) = [[0A], [0A], [1A]] + [[-I, -I, -I], [0A, 0A, -I], [-I, -I, -I]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: g(s(x)) -> s(s(g(x))) s(s(s(0))) -> f(s(0)) f(g(x)) -> g(g(f(x))) g(x) -> h(h(h(h(x, x), x), x), x) h(f(x), g(x)) -> f(s(x)) f(s(s(x))) -> h(f(x), g(h(x, x))) h(p(x), g(x)) -> p(s(x)) p(s(s(0))) -> s(s(s(0))) s(s(0)) -> p(s(0)) s(s(s(s(s(0))))) -> p(s(s(0))) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) f(0) -> 0 f(s(0)) -> s(0) g(x) -> r(x) g(x) -> k(x) s(x) -> h(0, x) s(x) -> h(x, 0) s(0) -> r(0) s(s(s(0))) -> r(s(0)) s(0) -> p(0) s(0) -> k(0) s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) p(s(0)) -> 0 r(s(0)) -> s(0) a -> 0 ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> F(x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> F(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F(s(s(x))) -> F(x) The graph contains the following edges 1 > 1 ---------------------------------------- (35) YES ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) The TRS R consists of the following rules: f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) s(x) -> h(0, x) s(x) -> h(x, 0) f(0) -> 0 s(s(s(0))) -> f(s(0)) f(s(0)) -> s(0) h(f(x), g(x)) -> f(s(x)) g(x) -> h(h(h(h(x, x), x), x), x) f(s(s(x))) -> h(f(x), g(h(x, x))) s(0) -> r(0) s(s(s(0))) -> r(s(0)) r(s(0)) -> s(0) g(x) -> r(x) s(0) -> p(0) s(s(0)) -> p(s(0)) p(s(0)) -> 0 s(s(s(s(s(0))))) -> p(s(s(0))) p(s(s(0))) -> s(s(s(0))) h(p(x), g(x)) -> p(s(x)) s(0) -> k(0) s(s(p(p(a)))) -> s(k(p(a))) s(k(p(a))) -> p(p(a)) g(x) -> k(x) a -> 0 s(h(r(k(p(x))), r(x))) -> h(r(r(p(x))), k(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *G(s(x)) -> G(x) The graph contains the following edges 1 > 1 ---------------------------------------- (40) YES