YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S ) Problem 1: Innermost Equivalent Processor: -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) F(s(x:S),y:S) -> -#(s(x:S),y:S) F(s(x:S),y:S) -> -#(y:S,s(x:S)) F(s(x:S),y:S) -> F(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) F(s(x:S),y:S) -> P(-(s(x:S),y:S)) F(s(x:S),y:S) -> P(-(y:S,s(x:S))) F(x:S,s(y:S)) -> -#(s(y:S),x:S) F(x:S,s(y:S)) -> -#(x:S,s(y:S)) F(x:S,s(y:S)) -> F(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) F(x:S,s(y:S)) -> P(-(s(y:S),x:S)) F(x:S,s(y:S)) -> P(-(x:S,s(y:S))) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S Problem 1: SCC Processor: -> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) F(s(x:S),y:S) -> -#(s(x:S),y:S) F(s(x:S),y:S) -> -#(y:S,s(x:S)) F(s(x:S),y:S) -> F(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) F(s(x:S),y:S) -> P(-(s(x:S),y:S)) F(s(x:S),y:S) -> P(-(y:S,s(x:S))) F(x:S,s(y:S)) -> -#(s(y:S),x:S) F(x:S,s(y:S)) -> -#(x:S,s(y:S)) F(x:S,s(y:S)) -> F(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) F(x:S,s(y:S)) -> P(-(s(y:S),x:S)) F(x:S,s(y:S)) -> P(-(x:S,s(y:S))) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) ->->-> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S ->->Cycle: ->->-> Pairs: F(s(x:S),y:S) -> F(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) F(x:S,s(y:S)) -> F(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) ->->-> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: -#(s(x:S),s(y:S)) -> -#(x:S,y:S) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S ->Projection: pi(-#) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: F(s(x:S),y:S) -> F(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) F(x:S,s(y:S)) -> F(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S -> Usable rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S p(s(x:S)) -> x:S ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [-](X1,X2) = X1 + 1/2.X2 [f](X1,X2) = 0 [p](X) = 1/2.X [0] = 0 [fSNonEmpty] = 0 [s](X) = 2.X + 2 [-#](X1,X2) = 0 [F](X1,X2) = 2.X1 + 2.X2 [P](X) = 0 Problem 1.2: SCC Processor: -> Pairs: F(x:S,s(y:S)) -> F(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(x:S,s(y:S)) -> F(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) ->->-> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S Problem 1.2: Reduction Pairs Processor: -> Pairs: F(x:S,s(y:S)) -> F(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S -> Usable rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S p(s(x:S)) -> x:S ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [-](X1,X2) = X1 + 1/2 [f](X1,X2) = 0 [p](X) = 1/2.X + 1/2 [0] = 0 [fSNonEmpty] = 0 [s](X) = 2.X + 2 [-#](X1,X2) = 0 [F](X1,X2) = 1/2.X2 [P](X) = 0 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: -(s(x:S),s(y:S)) -> -(x:S,y:S) -(x:S,0) -> x:S f(s(x:S),y:S) -> f(p(-(s(x:S),y:S)),p(-(y:S,s(x:S)))) f(x:S,s(y:S)) -> f(p(-(x:S,s(y:S))),p(-(s(y:S),x:S))) p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.