YES After renaming modulo { o->0, l->1, r->2, n->3, L->4, R->5 }, it remains to prove termination of the 8-rule system { 0 1 -> 2 , 3 1 0 -> 2 0 , 4 1 0 -> 4 2 0 , 2 0 -> 1 , 0 2 3 -> 0 1 , 0 2 5 -> 0 1 5 , 4 ->= 4 3 , 5 ->= 3 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 1 | | 0 1 | \ / 1 is interpreted by / \ | 1 0 | | 0 1 | \ / 2 is interpreted by / \ | 1 0 | | 0 1 | \ / 3 is interpreted by / \ | 1 0 | | 0 1 | \ / 4 is interpreted by / \ | 1 1 | | 0 1 | \ / 5 is interpreted by / \ | 1 1 | | 0 1 | \ / After renaming modulo { 3->0, 1->1, 0->2, 2->3, 4->4, 5->5 }, it remains to prove termination of the 6-rule system { 0 1 2 -> 3 2 , 4 1 2 -> 4 3 2 , 2 3 0 -> 2 1 , 2 3 5 -> 2 1 5 , 4 ->= 4 0 , 5 ->= 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 5->4, 4->5 }, it remains to prove termination of the 5-rule system { 0 1 2 -> 3 2 , 2 3 0 -> 2 1 , 2 3 4 -> 2 1 4 , 5 ->= 5 0 , 4 ->= 0 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 5->4, 4->5 }, it remains to prove termination of the 4-rule system { 0 1 2 -> 3 2 , 2 3 0 -> 2 1 , 4 ->= 4 0 , 5 ->= 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 1 | | 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 1 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 | | 0 1 0 0 | | 0 0 0 0 | | 0 0 0 0 | \ / After renaming modulo { 2->0, 3->1, 0->2, 1->3, 4->4, 5->5 }, it remains to prove termination of the 3-rule system { 0 1 2 -> 0 3 , 4 ->= 4 2 , 5 ->= 2 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 1 | | 0 1 | \ / 1 is interpreted by / \ | 1 1 | | 0 1 | \ / 2 is interpreted by / \ | 1 0 | | 0 1 | \ / 3 is interpreted by / \ | 1 0 | | 0 1 | \ / 4 is interpreted by / \ | 1 1 | | 0 1 | \ / 5 is interpreted by / \ | 1 1 | | 0 1 | \ / After renaming modulo { 4->0, 2->1, 5->2 }, it remains to prove termination of the 2-rule system { 0 ->= 0 1 , 2 ->= 1 2 } The system is trivially terminating.