YES After renaming modulo { b->0, p->1, q->2, 1->3, 0->4 }, it remains to prove termination of the 6-rule system { 0 1 0 -> 0 2 0 , 3 1 4 3 4 ->= 1 , 2 ->= 4 2 4 , 2 ->= 3 2 3 , 2 ->= 4 1 4 , 2 ->= 3 1 3 } Applying context closure of depth 1 in the following form: System R over Sigma maps to { fold(xly) -> fold(xry) | l -> r in R, x,y in Sigma } over Sigma^2, where fold(a_1...a_n) = (a_1,a_2)...(a_{n-1},a_{n}) After renaming modulo { [0, 0]->0, [0, 1]->1, [1, 0]->2, [0, 2]->3, [2, 0]->4, [0, 3]->5, [3, 1]->6, [1, 4]->7, [4, 3]->8, [3, 4]->9, [4, 0]->10, [0, 4]->11, [4, 2]->12, [2, 4]->13, [3, 2]->14, [2, 3]->15, [3, 0]->16, [4, 1]->17, [1, 3]->18, [1, 1]->19, [2, 1]->20, [1, 2]->21, [2, 2]->22, [3, 3]->23, [4, 4]->24 }, it remains to prove termination of the 150-rule system { 0 1 2 0 -> 0 3 4 0 , 5 6 7 8 9 10 ->= 1 2 , 3 4 ->= 11 12 13 10 , 3 4 ->= 5 14 15 16 , 3 4 ->= 11 17 7 10 , 3 4 ->= 5 6 18 16 , 0 1 2 1 -> 0 3 4 1 , 5 6 7 8 9 17 ->= 1 19 , 3 20 ->= 11 12 13 17 , 3 20 ->= 5 14 15 6 , 3 20 ->= 11 17 7 17 , 3 20 ->= 5 6 18 6 , 0 1 2 3 -> 0 3 4 3 , 5 6 7 8 9 12 ->= 1 21 , 3 22 ->= 11 12 13 12 , 3 22 ->= 5 14 15 14 , 3 22 ->= 11 17 7 12 , 3 22 ->= 5 6 18 14 , 0 1 2 5 -> 0 3 4 5 , 5 6 7 8 9 8 ->= 1 18 , 3 15 ->= 11 12 13 8 , 3 15 ->= 5 14 15 23 , 3 15 ->= 11 17 7 8 , 3 15 ->= 5 6 18 23 , 0 1 2 11 -> 0 3 4 11 , 5 6 7 8 9 24 ->= 1 7 , 3 13 ->= 11 12 13 24 , 3 13 ->= 5 14 15 9 , 3 13 ->= 11 17 7 24 , 3 13 ->= 5 6 18 9 , 2 1 2 0 -> 2 3 4 0 , 18 6 7 8 9 10 ->= 19 2 , 21 4 ->= 7 12 13 10 , 21 4 ->= 18 14 15 16 , 21 4 ->= 7 17 7 10 , 21 4 ->= 18 6 18 16 , 2 1 2 1 -> 2 3 4 1 , 18 6 7 8 9 17 ->= 19 19 , 21 20 ->= 7 12 13 17 , 21 20 ->= 18 14 15 6 , 21 20 ->= 7 17 7 17 , 21 20 ->= 18 6 18 6 , 2 1 2 3 -> 2 3 4 3 , 18 6 7 8 9 12 ->= 19 21 , 21 22 ->= 7 12 13 12 , 21 22 ->= 18 14 15 14 , 21 22 ->= 7 17 7 12 , 21 22 ->= 18 6 18 14 , 2 1 2 5 -> 2 3 4 5 , 18 6 7 8 9 8 ->= 19 18 , 21 15 ->= 7 12 13 8 , 21 15 ->= 18 14 15 23 , 21 15 ->= 7 17 7 8 , 21 15 ->= 18 6 18 23 , 2 1 2 11 -> 2 3 4 11 , 18 6 7 8 9 24 ->= 19 7 , 21 13 ->= 7 12 13 24 , 21 13 ->= 18 14 15 9 , 21 13 ->= 7 17 7 24 , 21 13 ->= 18 6 18 9 , 4 1 2 0 -> 4 3 4 0 , 15 6 7 8 9 10 ->= 20 2 , 22 4 ->= 13 12 13 10 , 22 4 ->= 15 14 15 16 , 22 4 ->= 13 17 7 10 , 22 4 ->= 15 6 18 16 , 4 1 2 1 -> 4 3 4 1 , 15 6 7 8 9 17 ->= 20 19 , 22 20 ->= 13 12 13 17 , 22 20 ->= 15 14 15 6 , 22 20 ->= 13 17 7 17 , 22 20 ->= 15 6 18 6 , 4 1 2 3 -> 4 3 4 3 , 15 6 7 8 9 12 ->= 20 21 , 22 22 ->= 13 12 13 12 , 22 22 ->= 15 14 15 14 , 22 22 ->= 13 17 7 12 , 22 22 ->= 15 6 18 14 , 4 1 2 5 -> 4 3 4 5 , 15 6 7 8 9 8 ->= 20 18 , 22 15 ->= 13 12 13 8 , 22 15 ->= 15 14 15 23 , 22 15 ->= 13 17 7 8 , 22 15 ->= 15 6 18 23 , 4 1 2 11 -> 4 3 4 11 , 15 6 7 8 9 24 ->= 20 7 , 22 13 ->= 13 12 13 24 , 22 13 ->= 15 14 15 9 , 22 13 ->= 13 17 7 24 , 22 13 ->= 15 6 18 9 , 16 1 2 0 -> 16 3 4 0 , 23 6 7 8 9 10 ->= 6 2 , 14 4 ->= 9 12 13 10 , 14 4 ->= 23 14 15 16 , 14 4 ->= 9 17 7 10 , 14 4 ->= 23 6 18 16 , 16 1 2 1 -> 16 3 4 1 , 23 6 7 8 9 17 ->= 6 19 , 14 20 ->= 9 12 13 17 , 14 20 ->= 23 14 15 6 , 14 20 ->= 9 17 7 17 , 14 20 ->= 23 6 18 6 , 16 1 2 3 -> 16 3 4 3 , 23 6 7 8 9 12 ->= 6 21 , 14 22 ->= 9 12 13 12 , 14 22 ->= 23 14 15 14 , 14 22 ->= 9 17 7 12 , 14 22 ->= 23 6 18 14 , 16 1 2 5 -> 16 3 4 5 , 23 6 7 8 9 8 ->= 6 18 , 14 15 ->= 9 12 13 8 , 14 15 ->= 23 14 15 23 , 14 15 ->= 9 17 7 8 , 14 15 ->= 23 6 18 23 , 16 1 2 11 -> 16 3 4 11 , 23 6 7 8 9 24 ->= 6 7 , 14 13 ->= 9 12 13 24 , 14 13 ->= 23 14 15 9 , 14 13 ->= 9 17 7 24 , 14 13 ->= 23 6 18 9 , 10 1 2 0 -> 10 3 4 0 , 8 6 7 8 9 10 ->= 17 2 , 12 4 ->= 24 12 13 10 , 12 4 ->= 8 14 15 16 , 12 4 ->= 24 17 7 10 , 12 4 ->= 8 6 18 16 , 10 1 2 1 -> 10 3 4 1 , 8 6 7 8 9 17 ->= 17 19 , 12 20 ->= 24 12 13 17 , 12 20 ->= 8 14 15 6 , 12 20 ->= 24 17 7 17 , 12 20 ->= 8 6 18 6 , 10 1 2 3 -> 10 3 4 3 , 8 6 7 8 9 12 ->= 17 21 , 12 22 ->= 24 12 13 12 , 12 22 ->= 8 14 15 14 , 12 22 ->= 24 17 7 12 , 12 22 ->= 8 6 18 14 , 10 1 2 5 -> 10 3 4 5 , 8 6 7 8 9 8 ->= 17 18 , 12 15 ->= 24 12 13 8 , 12 15 ->= 8 14 15 23 , 12 15 ->= 24 17 7 8 , 12 15 ->= 8 6 18 23 , 10 1 2 11 -> 10 3 4 11 , 8 6 7 8 9 24 ->= 17 7 , 12 13 ->= 24 12 13 24 , 12 13 ->= 8 14 15 9 , 12 13 ->= 24 17 7 24 , 12 13 ->= 8 6 18 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 1 | | 0 1 | \ / 1 is interpreted by / \ | 1 0 | | 0 1 | \ / 2 is interpreted by / \ | 1 0 | | 0 1 | \ / 3 is interpreted by / \ | 1 0 | | 0 1 | \ / 4 is interpreted by / \ | 1 0 | | 0 1 | \ / 5 is interpreted by / \ | 1 0 | | 0 1 | \ / 6 is interpreted by / \ | 1 0 | | 0 1 | \ / 7 is interpreted by / \ | 1 0 | | 0 1 | \ / 8 is interpreted by / \ | 1 0 | | 0 1 | \ / 9 is interpreted by / \ | 1 0 | | 0 1 | \ / 10 is interpreted by / \ | 1 0 | | 0 1 | \ / 11 is interpreted by / \ | 1 0 | | 0 1 | \ / 12 is interpreted by / \ | 1 0 | | 0 1 | \ / 13 is interpreted by / \ | 1 0 | | 0 1 | \ / 14 is interpreted by / \ | 1 0 | | 0 1 | \ / 15 is interpreted by / \ | 1 0 | | 0 1 | \ / 16 is interpreted by / \ | 1 0 | | 0 1 | \ / 17 is interpreted by / \ | 1 0 | | 0 1 | \ / 18 is interpreted by / \ | 1 0 | | 0 1 | \ / 19 is interpreted by / \ | 1 0 | | 0 1 | \ / 20 is interpreted by / \ | 1 0 | | 0 1 | \ / 21 is interpreted by / \ | 1 0 | | 0 1 | \ / 22 is interpreted by / \ | 1 1 | | 0 1 | \ / 23 is interpreted by / \ | 1 0 | | 0 1 | \ / 24 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7, 8->8, 9->9, 10->10, 11->11, 12->12, 13->13, 14->14, 15->15, 16->16, 17->17, 18->18, 19->19, 20->20, 21->21, 23->22, 24->23 }, it remains to prove termination of the 114-rule system { 0 1 2 0 -> 0 3 4 0 , 5 6 7 8 9 10 ->= 1 2 , 3 4 ->= 11 12 13 10 , 3 4 ->= 5 14 15 16 , 3 4 ->= 11 17 7 10 , 3 4 ->= 5 6 18 16 , 0 1 2 1 -> 0 3 4 1 , 5 6 7 8 9 17 ->= 1 19 , 3 20 ->= 11 12 13 17 , 3 20 ->= 5 14 15 6 , 3 20 ->= 11 17 7 17 , 3 20 ->= 5 6 18 6 , 0 1 2 3 -> 0 3 4 3 , 5 6 7 8 9 12 ->= 1 21 , 0 1 2 5 -> 0 3 4 5 , 5 6 7 8 9 8 ->= 1 18 , 3 15 ->= 11 12 13 8 , 3 15 ->= 5 14 15 22 , 3 15 ->= 11 17 7 8 , 3 15 ->= 5 6 18 22 , 0 1 2 11 -> 0 3 4 11 , 5 6 7 8 9 23 ->= 1 7 , 3 13 ->= 11 12 13 23 , 3 13 ->= 5 14 15 9 , 3 13 ->= 11 17 7 23 , 3 13 ->= 5 6 18 9 , 2 1 2 0 -> 2 3 4 0 , 18 6 7 8 9 10 ->= 19 2 , 21 4 ->= 7 12 13 10 , 21 4 ->= 18 14 15 16 , 21 4 ->= 7 17 7 10 , 21 4 ->= 18 6 18 16 , 2 1 2 1 -> 2 3 4 1 , 18 6 7 8 9 17 ->= 19 19 , 21 20 ->= 7 12 13 17 , 21 20 ->= 18 14 15 6 , 21 20 ->= 7 17 7 17 , 21 20 ->= 18 6 18 6 , 2 1 2 3 -> 2 3 4 3 , 18 6 7 8 9 12 ->= 19 21 , 2 1 2 5 -> 2 3 4 5 , 18 6 7 8 9 8 ->= 19 18 , 21 15 ->= 7 12 13 8 , 21 15 ->= 18 14 15 22 , 21 15 ->= 7 17 7 8 , 21 15 ->= 18 6 18 22 , 2 1 2 11 -> 2 3 4 11 , 18 6 7 8 9 23 ->= 19 7 , 21 13 ->= 7 12 13 23 , 21 13 ->= 18 14 15 9 , 21 13 ->= 7 17 7 23 , 21 13 ->= 18 6 18 9 , 4 1 2 0 -> 4 3 4 0 , 15 6 7 8 9 10 ->= 20 2 , 4 1 2 1 -> 4 3 4 1 , 15 6 7 8 9 17 ->= 20 19 , 4 1 2 3 -> 4 3 4 3 , 15 6 7 8 9 12 ->= 20 21 , 4 1 2 5 -> 4 3 4 5 , 15 6 7 8 9 8 ->= 20 18 , 4 1 2 11 -> 4 3 4 11 , 15 6 7 8 9 23 ->= 20 7 , 16 1 2 0 -> 16 3 4 0 , 22 6 7 8 9 10 ->= 6 2 , 14 4 ->= 9 12 13 10 , 14 4 ->= 22 14 15 16 , 14 4 ->= 9 17 7 10 , 14 4 ->= 22 6 18 16 , 16 1 2 1 -> 16 3 4 1 , 22 6 7 8 9 17 ->= 6 19 , 14 20 ->= 9 12 13 17 , 14 20 ->= 22 14 15 6 , 14 20 ->= 9 17 7 17 , 14 20 ->= 22 6 18 6 , 16 1 2 3 -> 16 3 4 3 , 22 6 7 8 9 12 ->= 6 21 , 16 1 2 5 -> 16 3 4 5 , 22 6 7 8 9 8 ->= 6 18 , 14 15 ->= 9 12 13 8 , 14 15 ->= 22 14 15 22 , 14 15 ->= 9 17 7 8 , 14 15 ->= 22 6 18 22 , 16 1 2 11 -> 16 3 4 11 , 22 6 7 8 9 23 ->= 6 7 , 14 13 ->= 9 12 13 23 , 14 13 ->= 22 14 15 9 , 14 13 ->= 9 17 7 23 , 14 13 ->= 22 6 18 9 , 10 1 2 0 -> 10 3 4 0 , 8 6 7 8 9 10 ->= 17 2 , 12 4 ->= 23 12 13 10 , 12 4 ->= 8 14 15 16 , 12 4 ->= 23 17 7 10 , 12 4 ->= 8 6 18 16 , 10 1 2 1 -> 10 3 4 1 , 8 6 7 8 9 17 ->= 17 19 , 12 20 ->= 23 12 13 17 , 12 20 ->= 8 14 15 6 , 12 20 ->= 23 17 7 17 , 12 20 ->= 8 6 18 6 , 10 1 2 3 -> 10 3 4 3 , 8 6 7 8 9 12 ->= 17 21 , 10 1 2 5 -> 10 3 4 5 , 8 6 7 8 9 8 ->= 17 18 , 12 15 ->= 23 12 13 8 , 12 15 ->= 8 14 15 22 , 12 15 ->= 23 17 7 8 , 12 15 ->= 8 6 18 22 , 10 1 2 11 -> 10 3 4 11 , 8 6 7 8 9 23 ->= 17 7 , 12 13 ->= 23 12 13 23 , 12 13 ->= 8 14 15 9 , 12 13 ->= 23 17 7 23 , 12 13 ->= 8 6 18 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 0 | | 0 1 | \ / 1 is interpreted by / \ | 1 5 | | 0 1 | \ / 2 is interpreted by / \ | 1 5 | | 0 1 | \ / 3 is interpreted by / \ | 1 8 | | 0 1 | \ / 4 is interpreted by / \ | 1 1 | | 0 1 | \ / 5 is interpreted by / \ | 1 0 | | 0 1 | \ / 6 is interpreted by / \ | 1 6 | | 0 1 | \ / 7 is interpreted by / \ | 1 6 | | 0 1 | \ / 8 is interpreted by / \ | 1 0 | | 0 1 | \ / 9 is interpreted by / \ | 1 0 | | 0 1 | \ / 10 is interpreted by / \ | 1 0 | | 0 1 | \ / 11 is interpreted by / \ | 1 0 | | 0 1 | \ / 12 is interpreted by / \ | 1 7 | | 0 1 | \ / 13 is interpreted by / \ | 1 0 | | 0 1 | \ / 14 is interpreted by / \ | 1 7 | | 0 1 | \ / 15 is interpreted by / \ | 1 0 | | 0 1 | \ / 16 is interpreted by / \ | 1 0 | | 0 1 | \ / 17 is interpreted by / \ | 1 0 | | 0 1 | \ / 18 is interpreted by / \ | 1 0 | | 0 1 | \ / 19 is interpreted by / \ | 1 0 | | 0 1 | \ / 20 is interpreted by / \ | 1 6 | | 0 1 | \ / 21 is interpreted by / \ | 1 13 | | 0 1 | \ / 22 is interpreted by / \ | 1 0 | | 0 1 | \ / 23 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { 21->0, 15->1, 7->2, 12->3, 13->4, 8->5, 23->6, 6->7, 9->8, 20->9, 14->10, 22->11 }, it remains to prove termination of the 16-rule system { 0 1 ->= 2 3 4 5 , 0 4 ->= 2 3 4 6 , 1 7 2 5 8 3 ->= 9 0 , 1 7 2 5 8 6 ->= 9 2 , 10 9 ->= 11 10 1 7 , 11 7 2 5 8 3 ->= 7 0 , 10 1 ->= 8 3 4 5 , 10 1 ->= 11 10 1 11 , 11 7 2 5 8 6 ->= 7 2 , 10 4 ->= 8 3 4 6 , 10 4 ->= 11 10 1 8 , 3 9 ->= 5 10 1 7 , 3 1 ->= 6 3 4 5 , 3 1 ->= 5 10 1 11 , 3 4 ->= 6 3 4 6 , 3 4 ->= 5 10 1 8 } The system is trivially terminating.