YES Problem 1: (VAR v_NonEmpty:S x1:S) (RULES a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ) Problem 1: Dependency Pairs Processor: -> Pairs: A(a(x1:S)) -> A(b(a(x1:S))) A(a(x1:S)) -> B(a(x1:S)) B(a(a(x1:S))) -> A(b(c(x1:S))) B(a(a(x1:S))) -> B(c(x1:S)) B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> A(c(x1:S)) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> A(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) Problem 1: SCC Processor: -> Pairs: A(a(x1:S)) -> A(b(a(x1:S))) A(a(x1:S)) -> B(a(x1:S)) B(a(a(x1:S))) -> A(b(c(x1:S))) B(a(a(x1:S))) -> B(c(x1:S)) B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> A(c(x1:S)) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> A(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: A(a(x1:S)) -> A(b(a(x1:S))) A(a(x1:S)) -> B(a(x1:S)) B(a(a(x1:S))) -> A(b(c(x1:S))) B(a(a(x1:S))) -> B(c(x1:S)) B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> A(c(x1:S)) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> A(x1:S) C(b(x1:S)) -> B(a(x1:S)) ->->-> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) Problem 1: Reduction Pair Processor: -> Pairs: A(a(x1:S)) -> A(b(a(x1:S))) A(a(x1:S)) -> B(a(x1:S)) B(a(a(x1:S))) -> A(b(c(x1:S))) B(a(a(x1:S))) -> B(c(x1:S)) B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> A(c(x1:S)) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> A(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) -> Usable rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [a](X) = 2.X + 2 [b](X) = X [c](X) = 2.X + 2 [A](X) = 2.X + 1 [B](X) = X [C](X) = 2.X + 2 Problem 1: SCC Processor: -> Pairs: A(a(x1:S)) -> A(b(a(x1:S))) B(a(a(x1:S))) -> A(b(c(x1:S))) B(a(a(x1:S))) -> B(c(x1:S)) B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> A(c(x1:S)) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> A(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: A(a(x1:S)) -> A(b(a(x1:S))) ->->-> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->->Cycle: ->->-> Pairs: B(a(a(x1:S))) -> B(c(x1:S)) B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> B(a(x1:S)) ->->-> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) The problem is decomposed in 2 subproblems. Problem 1.1: Reduction Pair Processor: -> Pairs: A(a(x1:S)) -> A(b(a(x1:S))) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) -> Usable rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [a](X) = 2.X + 2 [b](X) = 1/2.X + 1/2 [c](X) = 2.X + 1/2 [A](X) = X Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pair Processor: -> Pairs: B(a(a(x1:S))) -> B(c(x1:S)) B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) -> Usable rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [a](X) = X + 2 [b](X) = X [c](X) = X + 2 [B](X) = X [C](X) = X + 2 Problem 1.2: SCC Processor: -> Pairs: B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> B(a(x1:S)) ->->-> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) Problem 1.2: Reduction Pair Processor: -> Pairs: B(a(a(x1:S))) -> C(x1:S) C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) -> Usable rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [a](X) = 2.X + 2 [b](X) = X [c](X) = 2.X + 2 [B](X) = X [C](X) = 2.X + 2 Problem 1.2: SCC Processor: -> Pairs: C(a(x1:S)) -> C(x1:S) C(b(x1:S)) -> B(a(x1:S)) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: C(a(x1:S)) -> C(x1:S) ->->-> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) Problem 1.2: Subterm Processor: -> Pairs: C(a(x1:S)) -> C(x1:S) -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Projection: pi(C) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: a(a(x1:S)) -> a(b(a(x1:S))) b(a(a(x1:S))) -> a(b(c(x1:S))) c(a(x1:S)) -> a(c(x1:S)) c(b(x1:S)) -> b(a(x1:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.