YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 11 ms] (2) QDP (3) QDPOrderProof [EQUIVALENT, 226 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 139 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 72 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) QDPOrderProof [EQUIVALENT, 42 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a(b(x1)) -> c(b(x1)) c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) b(b(x1)) -> f(x1) c(b(x1)) -> g(x1) e(x1) -> f(x1) e(x1) -> b(b(x1)) f(g(x1)) -> a(c(x1)) g(f(x1)) -> e(x1) a(x1) -> b(c(x1)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A(b(x1)) -> C(b(x1)) C(c(x1)) -> D(b(x1)) C(c(x1)) -> B(x1) D(x1) -> C(e(x1)) D(x1) -> E(x1) B(b(x1)) -> F(x1) C(b(x1)) -> G(x1) E(x1) -> F(x1) E(x1) -> B(b(x1)) E(x1) -> B(x1) F(g(x1)) -> A(c(x1)) F(g(x1)) -> C(x1) G(f(x1)) -> E(x1) A(x1) -> B(c(x1)) A(x1) -> C(x1) The TRS R consists of the following rules: a(b(x1)) -> c(b(x1)) c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) b(b(x1)) -> f(x1) c(b(x1)) -> g(x1) e(x1) -> f(x1) e(x1) -> b(b(x1)) f(g(x1)) -> a(c(x1)) g(f(x1)) -> e(x1) a(x1) -> b(c(x1)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. E(x1) -> F(x1) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A(x_1)) = [[0A]] + [[0A, 0A, 1A]] * x_1 >>> <<< POL(b(x_1)) = [[-I], [0A], [-I]] + [[0A, -I, 0A], [0A, 0A, 0A], [0A, -I, 0A]] * x_1 >>> <<< POL(C(x_1)) = [[0A]] + [[0A, 0A, 1A]] * x_1 >>> <<< POL(c(x_1)) = [[0A], [0A], [-I]] + [[0A, 0A, 1A], [0A, 0A, 0A], [0A, -I, 0A]] * x_1 >>> <<< POL(D(x_1)) = [[0A]] + [[1A, 0A, 1A]] * x_1 >>> <<< POL(B(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(e(x_1)) = [[-I], [0A], [-I]] + [[0A, -I, 0A], [0A, 0A, 0A], [0A, -I, 0A]] * x_1 >>> <<< POL(E(x_1)) = [[0A]] + [[1A, 0A, 0A]] * x_1 >>> <<< POL(F(x_1)) = [[-I]] + [[0A, -I, -I]] * x_1 >>> <<< POL(G(x_1)) = [[0A]] + [[0A, 0A, 1A]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [0A], [-I]] + [[1A, 0A, 1A], [0A, 0A, -I], [0A, -I, -I]] * x_1 >>> <<< POL(f(x_1)) = [[-I], [0A], [-I]] + [[0A, -I, 0A], [0A, 0A, -I], [0A, -I, 0A]] * x_1 >>> <<< POL(d(x_1)) = [[0A], [0A], [-I]] + [[1A, 0A, 1A], [0A, 0A, 0A], [0A, -I, 0A]] * x_1 >>> <<< POL(a(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, 1A], [0A, 0A, 1A], [0A, 0A, 1A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) c(b(x1)) -> g(x1) g(f(x1)) -> e(x1) e(x1) -> f(x1) f(g(x1)) -> a(c(x1)) a(b(x1)) -> c(b(x1)) a(x1) -> b(c(x1)) b(b(x1)) -> f(x1) e(x1) -> b(b(x1)) ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A(b(x1)) -> C(b(x1)) C(c(x1)) -> D(b(x1)) C(c(x1)) -> B(x1) D(x1) -> C(e(x1)) D(x1) -> E(x1) B(b(x1)) -> F(x1) C(b(x1)) -> G(x1) E(x1) -> B(b(x1)) E(x1) -> B(x1) F(g(x1)) -> A(c(x1)) F(g(x1)) -> C(x1) G(f(x1)) -> E(x1) A(x1) -> B(c(x1)) A(x1) -> C(x1) The TRS R consists of the following rules: a(b(x1)) -> c(b(x1)) c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) b(b(x1)) -> f(x1) c(b(x1)) -> g(x1) e(x1) -> f(x1) e(x1) -> b(b(x1)) f(g(x1)) -> a(c(x1)) g(f(x1)) -> e(x1) a(x1) -> b(c(x1)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(g(x1)) -> C(x1) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 >>> <<< POL(b(x_1)) = [[0A], [-I], [-I]] + [[0A, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(C(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 >>> <<< POL(c(x_1)) = [[0A], [-I], [-I]] + [[0A, 0A, 0A], [1A, 0A, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(D(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(B(x_1)) = [[0A]] + [[-I, -I, 0A]] * x_1 >>> <<< POL(e(x_1)) = [[0A], [-I], [-I]] + [[0A, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(E(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 >>> <<< POL(F(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 >>> <<< POL(G(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [1A], [-I]] + [[0A, 0A, 0A], [1A, 1A, 1A], [-I, 0A, 0A]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [-I], [-I]] + [[0A, 0A, 0A], [-I, 0A, 0A], [-I, 0A, -I]] * x_1 >>> <<< POL(d(x_1)) = [[0A], [1A], [-I]] + [[0A, 0A, 0A], [1A, 1A, 1A], [-I, 0A, 0A]] * x_1 >>> <<< POL(a(x_1)) = [[0A], [0A], [0A]] + [[1A, 0A, 0A], [1A, 0A, 0A], [1A, 0A, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) c(b(x1)) -> g(x1) g(f(x1)) -> e(x1) e(x1) -> f(x1) f(g(x1)) -> a(c(x1)) a(b(x1)) -> c(b(x1)) a(x1) -> b(c(x1)) b(b(x1)) -> f(x1) e(x1) -> b(b(x1)) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: A(b(x1)) -> C(b(x1)) C(c(x1)) -> D(b(x1)) C(c(x1)) -> B(x1) D(x1) -> C(e(x1)) D(x1) -> E(x1) B(b(x1)) -> F(x1) C(b(x1)) -> G(x1) E(x1) -> B(b(x1)) E(x1) -> B(x1) F(g(x1)) -> A(c(x1)) G(f(x1)) -> E(x1) A(x1) -> B(c(x1)) A(x1) -> C(x1) The TRS R consists of the following rules: a(b(x1)) -> c(b(x1)) c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) b(b(x1)) -> f(x1) c(b(x1)) -> g(x1) e(x1) -> f(x1) e(x1) -> b(b(x1)) f(g(x1)) -> a(c(x1)) g(f(x1)) -> e(x1) a(x1) -> b(c(x1)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(g(x1)) -> A(c(x1)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(A(x_1)) = [[0A]] + [[0A, 0A, -I]] * x_1 >>> <<< POL(b(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(C(x_1)) = [[0A]] + [[0A, 0A, -I]] * x_1 >>> <<< POL(c(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, -I], [0A, 0A, 0A], [0A, 1A, 0A]] * x_1 >>> <<< POL(D(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(B(x_1)) = [[0A]] + [[0A, -I, -I]] * x_1 >>> <<< POL(e(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(E(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(F(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(G(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [0A], [1A]] + [[0A, 0A, 0A], [0A, 0A, 0A], [1A, 1A, 1A]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(d(x_1)) = [[0A], [0A], [1A]] + [[0A, 0A, 0A], [0A, 0A, 0A], [1A, 1A, 1A]] * x_1 >>> <<< POL(a(x_1)) = [[0A], [0A], [0A]] + [[0A, 1A, 0A], [0A, 1A, 0A], [0A, 1A, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) c(b(x1)) -> g(x1) g(f(x1)) -> e(x1) e(x1) -> f(x1) f(g(x1)) -> a(c(x1)) a(b(x1)) -> c(b(x1)) a(x1) -> b(c(x1)) b(b(x1)) -> f(x1) e(x1) -> b(b(x1)) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: A(b(x1)) -> C(b(x1)) C(c(x1)) -> D(b(x1)) C(c(x1)) -> B(x1) D(x1) -> C(e(x1)) D(x1) -> E(x1) B(b(x1)) -> F(x1) C(b(x1)) -> G(x1) E(x1) -> B(b(x1)) E(x1) -> B(x1) G(f(x1)) -> E(x1) A(x1) -> B(c(x1)) A(x1) -> C(x1) The TRS R consists of the following rules: a(b(x1)) -> c(b(x1)) c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) b(b(x1)) -> f(x1) c(b(x1)) -> g(x1) e(x1) -> f(x1) e(x1) -> b(b(x1)) f(g(x1)) -> a(c(x1)) g(f(x1)) -> e(x1) a(x1) -> b(c(x1)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 10 less nodes. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: D(x1) -> C(e(x1)) C(c(x1)) -> D(b(x1)) The TRS R consists of the following rules: a(b(x1)) -> c(b(x1)) c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) b(b(x1)) -> f(x1) c(b(x1)) -> g(x1) e(x1) -> f(x1) e(x1) -> b(b(x1)) f(g(x1)) -> a(c(x1)) g(f(x1)) -> e(x1) a(x1) -> b(c(x1)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. C(c(x1)) -> D(b(x1)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(D(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(C(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(e(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(c(x_1)) = [[1A], [0A], [0A]] + [[-I, 1A, 0A], [-I, 0A, 1A], [-I, 0A, 0A]] * x_1 >>> <<< POL(b(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(d(x_1)) = [[1A], [1A], [0A]] + [[0A, 1A, 1A], [0A, 1A, 1A], [-I, 0A, 0A]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [1A], [-I]] + [[-I, 0A, 1A], [-I, 1A, 1A], [-I, -I, 0A]] * x_1 >>> <<< POL(f(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(a(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, 1A], [0A, 0A, 1A], [0A, 0A, 1A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) c(b(x1)) -> g(x1) g(f(x1)) -> e(x1) e(x1) -> f(x1) f(g(x1)) -> a(c(x1)) a(b(x1)) -> c(b(x1)) a(x1) -> b(c(x1)) b(b(x1)) -> f(x1) e(x1) -> b(b(x1)) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: D(x1) -> C(e(x1)) The TRS R consists of the following rules: a(b(x1)) -> c(b(x1)) c(c(x1)) -> d(b(x1)) d(x1) -> c(e(x1)) b(b(x1)) -> f(x1) c(b(x1)) -> g(x1) e(x1) -> f(x1) e(x1) -> b(b(x1)) f(g(x1)) -> a(c(x1)) g(f(x1)) -> e(x1) a(x1) -> b(c(x1)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (14) TRUE