YES summary ************************************************** SRS with 3 rules on 3 letters mirror SRS with 3 rules on 3 letters DP SRS with 6 strict rules and 3 weak rules on 6 letters weights SRS with 4 strict rules and 3 weak rules on 5 letters EDG SRS with 4 strict rules and 3 weak rules on 5 letters Matrix { monotone = Weak, domain = Arctic, bits = 3, dim = 4, solver = Minisatapi, verbose = False, tracing = False} SRS with 3 strict rules and 3 weak rules on 5 letters EDG SRS with 3 strict rules and 3 weak rules on 5 letters Matrix { monotone = Weak, domain = Arctic, bits = 3, dim = 4, solver = Minisatapi, verbose = False, tracing = False} SRS with 1 strict rules and 3 weak rules on 5 letters weights SRS with 0 strict rules and 3 weak rules on 3 letters EDG ************************************************** skeleton: \Mirror(3,3)\Deepee(6/3,6)\Weight\EDG(4/3,5)\Matrix{\Arctic}{4}\EDG(3/3,5)\Matrix{\Arctic}{4}(1/3,5)\Weight(0/3,3)\EDG[] ************************************************** let {} in let {trac = False;done = Worker No_Strict_Rules;mo = Pre (Or_Else Count (IfSizeLeq 10000 GLPK Fail));wop = Or_Else (Worker (Weight {modus = mo})) Pass;weighted = \ m -> And_Then m wop;tiling = \ m w -> weighted (And_Then (Worker (Tiling {method = m,width = w,unlabel = False})) (Worker Remap));when_small = \ m -> And_Then (Worker (SizeAtmost 1000)) m;when_medium = \ m -> And_Then (Worker (SizeAtmost 10000)) m;solver = Minisatapi;qpi = \ dim bits -> weighted (when_small (Worker (QPI {tracing = trac,dim = dim,bits = bits,solver = solver})));matrix = \ dom dim bits -> weighted (when_small (Worker (Matrix {monotone = Weak,domain = dom,dim = dim,bits = bits,tracing = trac,solver = solver})));kbo = \ b -> weighted (when_small (Worker (KBO {bits = b,solver = solver})));mb = Worker (Matchbound {method = RFC,max_size = 100000});remove = First_Of ([ Worker (Weight {modus = mo})] <> ([ Seq [ qpi 2 4, qpi 3 4, qpi 4 4], Seq [ qpi 5 4, qpi 6 3, qpi 7 3]] <> ([ Seq [ matrix Arctic 2 5, matrix Arctic 3 4, matrix Arctic 4 3], Seq [ matrix Natural 2 5, matrix Natural 3 4, matrix Natural 4 3]] <> [ kbo 1, And_Then (Worker Mirror) (And_Then (kbo 1) (Worker Mirror))])));dp = As_Transformer (Apply (And_Then (Worker (DP {tracing = True})) (Worker Remap)) (Apply wop (Branch (Worker (EDG {tracing = True})) remove)));noh = [ Worker (Enumerate {closure = Forward}), Worker (Enumerate {closure = Backward})];yeah = Tree_Search_Preemptive 0 done ([ Worker (Weight {modus = mo}), mb, And_Then (Worker Mirror) mb, dp, And_Then (Worker Mirror) dp, tiling Forward 2, And_Then (Worker Mirror) (tiling Forward 2)] <> [ Worker (Unlabel {verbose = True})])} in Apply (Worker Remap) (Seq [ Worker KKST01, First_Of ([ yeah] <> noh)])