YES After renaming modulo { a->0, b->1, c->2 }, it remains to prove termination of the 4-rule system { 0 -> , 0 1 -> 1 1 2 0 , 1 1 -> 0 , 2 2 -> } The system was reversed. After renaming modulo { 0->0, 1->1, 2->2 }, it remains to prove termination of the 4-rule system { 0 -> , 1 0 -> 0 2 1 1 , 1 1 -> 0 , 2 2 -> } Applying sparse 2-tiling [Hofbauer/Geser/Waldmann, FSCD 2019]. After renaming modulo { (0,0)->0, (0,1)->1, (0,2)->2, (0,4)->3, (1,0)->4, (1,1)->5, (1,2)->6, (1,4)->7, (2,0)->8, (2,1)->9, (2,2)->10, (2,4)->11, (3,0)->12, (3,1)->13, (3,2)->14, (3,4)->15 }, it remains to prove termination of the 64-rule system { 0 0 -> 0 , 0 1 -> 1 , 0 2 -> 2 , 0 3 -> 3 , 4 0 -> 4 , 4 1 -> 5 , 4 2 -> 6 , 4 3 -> 7 , 8 0 -> 8 , 8 1 -> 9 , 8 2 -> 10 , 8 3 -> 11 , 12 0 -> 12 , 12 1 -> 13 , 12 2 -> 14 , 12 3 -> 15 , 1 4 0 -> 0 2 9 5 4 , 1 4 1 -> 0 2 9 5 5 , 1 4 2 -> 0 2 9 5 6 , 1 4 3 -> 0 2 9 5 7 , 5 4 0 -> 4 2 9 5 4 , 5 4 1 -> 4 2 9 5 5 , 5 4 2 -> 4 2 9 5 6 , 5 4 3 -> 4 2 9 5 7 , 9 4 0 -> 8 2 9 5 4 , 9 4 1 -> 8 2 9 5 5 , 9 4 2 -> 8 2 9 5 6 , 9 4 3 -> 8 2 9 5 7 , 13 4 0 -> 12 2 9 5 4 , 13 4 1 -> 12 2 9 5 5 , 13 4 2 -> 12 2 9 5 6 , 13 4 3 -> 12 2 9 5 7 , 1 5 4 -> 0 0 , 1 5 5 -> 0 1 , 1 5 6 -> 0 2 , 1 5 7 -> 0 3 , 5 5 4 -> 4 0 , 5 5 5 -> 4 1 , 5 5 6 -> 4 2 , 5 5 7 -> 4 3 , 9 5 4 -> 8 0 , 9 5 5 -> 8 1 , 9 5 6 -> 8 2 , 9 5 7 -> 8 3 , 13 5 4 -> 12 0 , 13 5 5 -> 12 1 , 13 5 6 -> 12 2 , 13 5 7 -> 12 3 , 2 10 8 -> 0 , 2 10 9 -> 1 , 2 10 10 -> 2 , 2 10 11 -> 3 , 6 10 8 -> 4 , 6 10 9 -> 5 , 6 10 10 -> 6 , 6 10 11 -> 7 , 10 10 8 -> 8 , 10 10 9 -> 9 , 10 10 10 -> 10 , 10 10 11 -> 11 , 14 10 8 -> 12 , 14 10 9 -> 13 , 14 10 10 -> 14 , 14 10 11 -> 15 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 4 | | 0 1 | \ / 1 is interpreted by / \ | 1 2 | | 0 1 | \ / 2 is interpreted by / \ | 1 0 | | 0 1 | \ / 3 is interpreted by / \ | 1 0 | | 0 1 | \ / 4 is interpreted by / \ | 1 4 | | 0 1 | \ / 5 is interpreted by / \ | 1 2 | | 0 1 | \ / 6 is interpreted by / \ | 1 0 | | 0 1 | \ / 7 is interpreted by / \ | 1 0 | | 0 1 | \ / 8 is interpreted by / \ | 1 2 | | 0 1 | \ / 9 is interpreted by / \ | 1 0 | | 0 1 | \ / 10 is interpreted by / \ | 1 2 | | 0 1 | \ / 11 is interpreted by / \ | 1 0 | | 0 1 | \ / 12 is interpreted by / \ | 1 2 | | 0 1 | \ / 13 is interpreted by / \ | 1 1 | | 0 1 | \ / 14 is interpreted by / \ | 1 0 | | 0 1 | \ / 15 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { 8->0, 2->1, 10->2, 1->3, 4->4, 0->5, 9->6, 5->7, 6->8, 3->9, 7->10 }, it remains to prove termination of the 29-rule system { 0 1 -> 2 , 3 4 5 -> 5 1 6 7 4 , 3 4 3 -> 5 1 6 7 7 , 3 4 1 -> 5 1 6 7 8 , 3 4 9 -> 5 1 6 7 10 , 7 4 5 -> 4 1 6 7 4 , 7 4 3 -> 4 1 6 7 7 , 7 4 1 -> 4 1 6 7 8 , 7 4 9 -> 4 1 6 7 10 , 6 4 5 -> 0 1 6 7 4 , 6 4 3 -> 0 1 6 7 7 , 6 4 1 -> 0 1 6 7 8 , 6 4 9 -> 0 1 6 7 10 , 3 7 4 -> 5 5 , 3 7 7 -> 5 3 , 3 7 8 -> 5 1 , 3 7 10 -> 5 9 , 7 7 4 -> 4 5 , 7 7 7 -> 4 3 , 7 7 8 -> 4 1 , 7 7 10 -> 4 9 , 6 7 4 -> 0 5 , 6 7 7 -> 0 3 , 6 7 8 -> 0 1 , 6 7 10 -> 0 9 , 1 2 0 -> 5 , 1 2 6 -> 3 , 8 2 0 -> 4 , 8 2 6 -> 7 } Applying the dependency pairs transformation. After renaming modulo { (3,true)->0, (4,false)->1, (5,false)->2, (1,true)->3, (6,false)->4, (7,false)->5, (6,true)->6, (7,true)->7, (3,false)->8, (1,false)->9, (8,false)->10, (8,true)->11, (9,false)->12, (10,false)->13, (0,true)->14, (2,false)->15, (0,false)->16 }, it remains to prove termination of the 87-rule system { 0 1 2 -> 3 4 5 1 , 0 1 2 -> 6 5 1 , 0 1 2 -> 7 1 , 0 1 8 -> 3 4 5 5 , 0 1 8 -> 6 5 5 , 0 1 8 -> 7 5 , 0 1 8 -> 7 , 0 1 9 -> 3 4 5 10 , 0 1 9 -> 6 5 10 , 0 1 9 -> 7 10 , 0 1 9 -> 11 , 0 1 12 -> 3 4 5 13 , 0 1 12 -> 6 5 13 , 0 1 12 -> 7 13 , 7 1 2 -> 3 4 5 1 , 7 1 2 -> 6 5 1 , 7 1 2 -> 7 1 , 7 1 8 -> 3 4 5 5 , 7 1 8 -> 6 5 5 , 7 1 8 -> 7 5 , 7 1 8 -> 7 , 7 1 9 -> 3 4 5 10 , 7 1 9 -> 6 5 10 , 7 1 9 -> 7 10 , 7 1 9 -> 11 , 7 1 12 -> 3 4 5 13 , 7 1 12 -> 6 5 13 , 7 1 12 -> 7 13 , 6 1 2 -> 14 9 4 5 1 , 6 1 2 -> 3 4 5 1 , 6 1 2 -> 6 5 1 , 6 1 2 -> 7 1 , 6 1 8 -> 14 9 4 5 5 , 6 1 8 -> 3 4 5 5 , 6 1 8 -> 6 5 5 , 6 1 8 -> 7 5 , 6 1 8 -> 7 , 6 1 9 -> 14 9 4 5 10 , 6 1 9 -> 3 4 5 10 , 6 1 9 -> 6 5 10 , 6 1 9 -> 7 10 , 6 1 9 -> 11 , 6 1 12 -> 14 9 4 5 13 , 6 1 12 -> 3 4 5 13 , 6 1 12 -> 6 5 13 , 6 1 12 -> 7 13 , 0 5 5 -> 0 , 0 5 10 -> 3 , 7 5 5 -> 0 , 7 5 10 -> 3 , 6 5 1 -> 14 2 , 6 5 5 -> 14 8 , 6 5 5 -> 0 , 6 5 10 -> 14 9 , 6 5 10 -> 3 , 6 5 13 -> 14 12 , 3 15 4 -> 0 , 11 15 4 -> 7 , 16 9 ->= 15 , 8 1 2 ->= 2 9 4 5 1 , 8 1 8 ->= 2 9 4 5 5 , 8 1 9 ->= 2 9 4 5 10 , 8 1 12 ->= 2 9 4 5 13 , 5 1 2 ->= 1 9 4 5 1 , 5 1 8 ->= 1 9 4 5 5 , 5 1 9 ->= 1 9 4 5 10 , 5 1 12 ->= 1 9 4 5 13 , 4 1 2 ->= 16 9 4 5 1 , 4 1 8 ->= 16 9 4 5 5 , 4 1 9 ->= 16 9 4 5 10 , 4 1 12 ->= 16 9 4 5 13 , 8 5 1 ->= 2 2 , 8 5 5 ->= 2 8 , 8 5 10 ->= 2 9 , 8 5 13 ->= 2 12 , 5 5 1 ->= 1 2 , 5 5 5 ->= 1 8 , 5 5 10 ->= 1 9 , 5 5 13 ->= 1 12 , 4 5 1 ->= 16 2 , 4 5 5 ->= 16 8 , 4 5 10 ->= 16 9 , 4 5 13 ->= 16 12 , 9 15 16 ->= 2 , 9 15 4 ->= 8 , 10 15 16 ->= 1 , 10 15 4 ->= 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 0 | | 0 1 | \ / 1 is interpreted by / \ | 1 2 | | 0 1 | \ / 2 is interpreted by / \ | 1 2 | | 0 1 | \ / 3 is interpreted by / \ | 1 0 | | 0 1 | \ / 4 is interpreted by / \ | 1 0 | | 0 1 | \ / 5 is interpreted by / \ | 1 1 | | 0 1 | \ / 6 is interpreted by / \ | 1 0 | | 0 1 | \ / 7 is interpreted by / \ | 1 0 | | 0 1 | \ / 8 is interpreted by / \ | 1 1 | | 0 1 | \ / 9 is interpreted by / \ | 1 0 | | 0 1 | \ / 10 is interpreted by / \ | 1 0 | | 0 1 | \ / 11 is interpreted by / \ | 1 0 | | 0 1 | \ / 12 is interpreted by / \ | 1 0 | | 0 1 | \ / 13 is interpreted by / \ | 1 0 | | 0 1 | \ / 14 is interpreted by / \ | 1 0 | | 0 1 | \ / 15 is interpreted by / \ | 1 1 | | 0 1 | \ / 16 is interpreted by / \ | 1 1 | | 0 1 | \ / After renaming modulo { 16->0, 9->1, 15->2, 8->3, 1->4, 2->5, 4->6, 5->7, 10->8, 12->9, 13->10 }, it remains to prove termination of the 29-rule system { 0 1 ->= 2 , 3 4 5 ->= 5 1 6 7 4 , 3 4 3 ->= 5 1 6 7 7 , 3 4 1 ->= 5 1 6 7 8 , 3 4 9 ->= 5 1 6 7 10 , 7 4 5 ->= 4 1 6 7 4 , 7 4 3 ->= 4 1 6 7 7 , 7 4 1 ->= 4 1 6 7 8 , 7 4 9 ->= 4 1 6 7 10 , 6 4 5 ->= 0 1 6 7 4 , 6 4 3 ->= 0 1 6 7 7 , 6 4 1 ->= 0 1 6 7 8 , 6 4 9 ->= 0 1 6 7 10 , 3 7 4 ->= 5 5 , 3 7 7 ->= 5 3 , 3 7 8 ->= 5 1 , 3 7 10 ->= 5 9 , 7 7 4 ->= 4 5 , 7 7 7 ->= 4 3 , 7 7 8 ->= 4 1 , 7 7 10 ->= 4 9 , 6 7 4 ->= 0 5 , 6 7 7 ->= 0 3 , 6 7 8 ->= 0 1 , 6 7 10 ->= 0 9 , 1 2 0 ->= 5 , 1 2 6 ->= 3 , 8 2 0 ->= 4 , 8 2 6 ->= 7 } The system is trivially terminating.