YES After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 79-rule system { 0 0 1 2 -> 0 3 1 0 2 , 0 1 2 2 -> 1 2 0 3 2 2 , 0 1 2 4 -> 0 3 2 3 1 4 , 0 5 0 5 -> 0 3 0 5 5 , 0 5 1 2 -> 1 0 1 5 2 , 0 5 1 2 -> 0 1 0 1 5 2 , 0 5 1 2 -> 0 3 2 3 1 5 , 0 5 4 2 -> 0 4 5 3 2 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 4 , 1 0 1 2 -> 1 1 3 0 2 , 1 0 1 2 -> 1 1 0 3 2 2 , 1 0 1 2 -> 1 1 0 3 2 3 , 1 0 5 4 -> 0 1 1 5 4 , 1 2 0 5 -> 0 3 2 3 1 5 , 1 2 0 5 -> 5 0 3 3 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 3 2 , 5 0 0 2 -> 5 0 3 0 2 , 5 0 1 2 -> 5 1 0 3 2 , 5 0 1 2 -> 5 1 0 3 2 3 , 0 0 0 1 2 -> 0 2 0 1 0 3 3 4 , 0 0 2 5 2 -> 0 3 2 0 5 2 , 0 1 2 5 0 -> 3 3 2 2 0 0 1 5 , 0 1 2 5 2 -> 0 3 2 1 5 3 2 , 0 3 5 2 2 -> 0 4 5 3 2 2 , 0 4 2 0 5 -> 0 4 0 3 2 1 5 , 0 4 2 5 2 -> 0 5 4 3 3 2 2 , 0 5 0 2 2 -> 0 2 5 0 3 2 , 0 5 0 5 1 -> 0 1 0 3 5 5 , 0 5 1 3 0 -> 0 0 1 1 5 3 , 0 5 2 2 4 -> 0 5 3 2 2 4 , 0 5 2 3 1 -> 0 1 5 3 2 2 2 , 0 5 2 4 1 -> 0 4 3 2 5 1 , 0 5 3 5 2 -> 0 0 3 5 5 2 , 0 5 5 3 1 -> 5 0 1 5 3 3 2 , 1 0 5 5 1 -> 0 4 5 1 5 1 , 1 1 2 2 0 -> 1 1 3 2 2 0 , 1 1 2 3 4 -> 1 1 3 2 2 4 , 1 1 3 5 2 -> 1 1 5 3 3 2 , 1 5 0 5 0 -> 0 1 5 3 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 3 2 2 , 5 0 2 0 5 -> 5 0 3 3 2 0 5 , 5 0 2 3 4 -> 5 0 3 2 3 4 , 5 5 0 1 2 -> 5 5 3 0 2 1 , 0 0 0 5 1 2 -> 0 0 1 5 0 2 4 , 0 0 1 2 4 1 -> 1 3 0 2 3 0 4 1 , 0 0 2 1 2 0 -> 0 1 0 3 2 2 2 0 , 0 0 2 3 0 5 -> 0 0 3 0 3 2 5 , 0 0 5 2 3 4 -> 0 4 0 3 1 2 5 , 0 0 5 5 3 4 -> 1 4 1 0 0 3 5 5 , 0 1 2 0 1 2 -> 1 0 3 2 2 1 1 0 , 0 1 2 2 0 5 -> 0 4 1 5 0 3 2 2 , 0 1 2 5 5 5 -> 0 2 5 1 5 3 5 , 0 1 3 1 5 2 -> 1 0 1 5 3 3 2 , 0 1 4 4 0 5 -> 4 3 0 0 1 5 4 , 0 2 5 3 5 1 -> 0 3 3 2 2 1 5 5 , 0 5 0 0 5 4 -> 0 1 0 1 0 4 5 5 , 0 5 1 2 1 4 -> 1 1 5 3 2 2 0 4 , 0 5 5 1 2 5 -> 0 2 1 5 5 4 5 , 1 0 0 2 3 4 -> 1 4 0 0 3 3 2 , 1 0 1 3 5 1 -> 0 1 1 1 5 3 2 2 , 1 0 5 4 2 1 -> 0 1 1 5 3 4 2 , 1 1 0 1 2 2 -> 1 0 1 1 3 1 2 2 , 1 2 1 2 0 0 -> 0 3 2 2 1 0 1 , 1 4 1 0 0 5 -> 0 0 1 5 4 2 1 , 1 4 3 5 0 2 -> 0 3 3 2 1 5 4 , 0 0 1 2 3 5 5 -> 5 1 5 0 3 0 2 1 , 0 0 2 3 4 2 1 -> 0 0 4 1 3 2 3 2 , 0 1 0 0 5 3 4 -> 0 3 0 5 0 4 3 1 , 0 1 2 4 4 0 5 -> 5 4 0 1 0 3 2 4 , 0 5 2 5 1 3 4 -> 1 4 5 2 0 3 1 5 , 0 5 5 0 2 5 1 -> 5 3 0 0 1 5 2 5 , 0 5 5 2 5 3 4 -> 0 3 2 1 4 5 5 5 , 1 0 1 2 3 4 5 -> 3 0 2 1 5 1 3 4 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 3 2 2 , 1 2 4 3 5 3 5 -> 5 1 3 2 2 4 3 5 , 1 4 3 5 2 5 2 -> 5 1 3 2 2 1 5 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 1 0 1 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 76-rule system { 0 0 1 2 -> 0 3 1 0 2 , 0 1 2 4 -> 0 3 2 3 1 4 , 0 5 0 5 -> 0 3 0 5 5 , 0 5 1 2 -> 1 0 1 5 2 , 0 5 1 2 -> 0 1 0 1 5 2 , 0 5 1 2 -> 0 3 2 3 1 5 , 0 5 4 2 -> 0 4 5 3 2 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 4 , 1 0 1 2 -> 1 1 3 0 2 , 1 0 1 2 -> 1 1 0 3 2 2 , 1 0 1 2 -> 1 1 0 3 2 3 , 1 0 5 4 -> 0 1 1 5 4 , 1 2 0 5 -> 0 3 2 3 1 5 , 1 2 0 5 -> 5 0 3 3 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 3 2 , 5 0 0 2 -> 5 0 3 0 2 , 5 0 1 2 -> 5 1 0 3 2 , 5 0 1 2 -> 5 1 0 3 2 3 , 0 0 0 1 2 -> 0 2 0 1 0 3 3 4 , 0 0 2 5 2 -> 0 3 2 0 5 2 , 0 1 2 5 0 -> 3 3 2 2 0 0 1 5 , 0 1 2 5 2 -> 0 3 2 1 5 3 2 , 0 3 5 2 2 -> 0 4 5 3 2 2 , 0 4 2 0 5 -> 0 4 0 3 2 1 5 , 0 4 2 5 2 -> 0 5 4 3 3 2 2 , 0 5 0 2 2 -> 0 2 5 0 3 2 , 0 5 0 5 1 -> 0 1 0 3 5 5 , 0 5 1 3 0 -> 0 0 1 1 5 3 , 0 5 2 2 4 -> 0 5 3 2 2 4 , 0 5 2 3 1 -> 0 1 5 3 2 2 2 , 0 5 2 4 1 -> 0 4 3 2 5 1 , 0 5 3 5 2 -> 0 0 3 5 5 2 , 0 5 5 3 1 -> 5 0 1 5 3 3 2 , 1 0 5 5 1 -> 0 4 5 1 5 1 , 1 1 2 2 0 -> 1 1 3 2 2 0 , 1 1 2 3 4 -> 1 1 3 2 2 4 , 1 1 3 5 2 -> 1 1 5 3 3 2 , 1 5 0 5 0 -> 0 1 5 3 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 3 2 2 , 5 0 2 0 5 -> 5 0 3 3 2 0 5 , 5 0 2 3 4 -> 5 0 3 2 3 4 , 5 5 0 1 2 -> 5 5 3 0 2 1 , 0 0 0 5 1 2 -> 0 0 1 5 0 2 4 , 0 0 1 2 4 1 -> 1 3 0 2 3 0 4 1 , 0 0 2 1 2 0 -> 0 1 0 3 2 2 2 0 , 0 0 2 3 0 5 -> 0 0 3 0 3 2 5 , 0 0 5 2 3 4 -> 0 4 0 3 1 2 5 , 0 0 5 5 3 4 -> 1 4 1 0 0 3 5 5 , 0 1 2 0 1 2 -> 1 0 3 2 2 1 1 0 , 0 1 2 5 5 5 -> 0 2 5 1 5 3 5 , 0 1 3 1 5 2 -> 1 0 1 5 3 3 2 , 0 1 4 4 0 5 -> 4 3 0 0 1 5 4 , 0 2 5 3 5 1 -> 0 3 3 2 2 1 5 5 , 0 5 0 0 5 4 -> 0 1 0 1 0 4 5 5 , 0 5 1 2 1 4 -> 1 1 5 3 2 2 0 4 , 0 5 5 1 2 5 -> 0 2 1 5 5 4 5 , 1 0 0 2 3 4 -> 1 4 0 0 3 3 2 , 1 0 1 3 5 1 -> 0 1 1 1 5 3 2 2 , 1 0 5 4 2 1 -> 0 1 1 5 3 4 2 , 1 2 1 2 0 0 -> 0 3 2 2 1 0 1 , 1 4 1 0 0 5 -> 0 0 1 5 4 2 1 , 1 4 3 5 0 2 -> 0 3 3 2 1 5 4 , 0 0 1 2 3 5 5 -> 5 1 5 0 3 0 2 1 , 0 0 2 3 4 2 1 -> 0 0 4 1 3 2 3 2 , 0 1 0 0 5 3 4 -> 0 3 0 5 0 4 3 1 , 0 1 2 4 4 0 5 -> 5 4 0 1 0 3 2 4 , 0 5 2 5 1 3 4 -> 1 4 5 2 0 3 1 5 , 0 5 5 0 2 5 1 -> 5 3 0 0 1 5 2 5 , 0 5 5 2 5 3 4 -> 0 3 2 1 4 5 5 5 , 1 0 1 2 3 4 5 -> 3 0 2 1 5 1 3 4 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 3 2 2 , 1 2 4 3 5 3 5 -> 5 1 3 2 2 4 3 5 , 1 4 3 5 2 5 2 -> 5 1 3 2 2 1 5 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 1 0 1 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 74-rule system { 0 0 1 2 -> 0 3 1 0 2 , 0 1 2 4 -> 0 3 2 3 1 4 , 0 5 0 5 -> 0 3 0 5 5 , 0 5 1 2 -> 1 0 1 5 2 , 0 5 1 2 -> 0 1 0 1 5 2 , 0 5 1 2 -> 0 3 2 3 1 5 , 0 5 4 2 -> 0 4 5 3 2 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 4 , 1 0 1 2 -> 1 1 3 0 2 , 1 0 1 2 -> 1 1 0 3 2 2 , 1 0 1 2 -> 1 1 0 3 2 3 , 1 0 5 4 -> 0 1 1 5 4 , 1 2 0 5 -> 0 3 2 3 1 5 , 1 2 0 5 -> 5 0 3 3 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 3 2 , 5 0 0 2 -> 5 0 3 0 2 , 5 0 1 2 -> 5 1 0 3 2 , 5 0 1 2 -> 5 1 0 3 2 3 , 0 0 0 1 2 -> 0 2 0 1 0 3 3 4 , 0 1 2 5 0 -> 3 3 2 2 0 0 1 5 , 0 3 5 2 2 -> 0 4 5 3 2 2 , 0 4 2 0 5 -> 0 4 0 3 2 1 5 , 0 4 2 5 2 -> 0 5 4 3 3 2 2 , 0 5 0 2 2 -> 0 2 5 0 3 2 , 0 5 0 5 1 -> 0 1 0 3 5 5 , 0 5 1 3 0 -> 0 0 1 1 5 3 , 0 5 2 2 4 -> 0 5 3 2 2 4 , 0 5 2 3 1 -> 0 1 5 3 2 2 2 , 0 5 2 4 1 -> 0 4 3 2 5 1 , 0 5 3 5 2 -> 0 0 3 5 5 2 , 0 5 5 3 1 -> 5 0 1 5 3 3 2 , 1 0 5 5 1 -> 0 4 5 1 5 1 , 1 1 2 2 0 -> 1 1 3 2 2 0 , 1 1 2 3 4 -> 1 1 3 2 2 4 , 1 1 3 5 2 -> 1 1 5 3 3 2 , 1 5 0 5 0 -> 0 1 5 3 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 3 2 2 , 5 0 2 0 5 -> 5 0 3 3 2 0 5 , 5 0 2 3 4 -> 5 0 3 2 3 4 , 5 5 0 1 2 -> 5 5 3 0 2 1 , 0 0 0 5 1 2 -> 0 0 1 5 0 2 4 , 0 0 1 2 4 1 -> 1 3 0 2 3 0 4 1 , 0 0 2 1 2 0 -> 0 1 0 3 2 2 2 0 , 0 0 2 3 0 5 -> 0 0 3 0 3 2 5 , 0 0 5 2 3 4 -> 0 4 0 3 1 2 5 , 0 0 5 5 3 4 -> 1 4 1 0 0 3 5 5 , 0 1 2 0 1 2 -> 1 0 3 2 2 1 1 0 , 0 1 2 5 5 5 -> 0 2 5 1 5 3 5 , 0 1 3 1 5 2 -> 1 0 1 5 3 3 2 , 0 1 4 4 0 5 -> 4 3 0 0 1 5 4 , 0 2 5 3 5 1 -> 0 3 3 2 2 1 5 5 , 0 5 0 0 5 4 -> 0 1 0 1 0 4 5 5 , 0 5 1 2 1 4 -> 1 1 5 3 2 2 0 4 , 0 5 5 1 2 5 -> 0 2 1 5 5 4 5 , 1 0 0 2 3 4 -> 1 4 0 0 3 3 2 , 1 0 1 3 5 1 -> 0 1 1 1 5 3 2 2 , 1 0 5 4 2 1 -> 0 1 1 5 3 4 2 , 1 2 1 2 0 0 -> 0 3 2 2 1 0 1 , 1 4 1 0 0 5 -> 0 0 1 5 4 2 1 , 1 4 3 5 0 2 -> 0 3 3 2 1 5 4 , 0 0 1 2 3 5 5 -> 5 1 5 0 3 0 2 1 , 0 0 2 3 4 2 1 -> 0 0 4 1 3 2 3 2 , 0 1 0 0 5 3 4 -> 0 3 0 5 0 4 3 1 , 0 1 2 4 4 0 5 -> 5 4 0 1 0 3 2 4 , 0 5 2 5 1 3 4 -> 1 4 5 2 0 3 1 5 , 0 5 5 0 2 5 1 -> 5 3 0 0 1 5 2 5 , 0 5 5 2 5 3 4 -> 0 3 2 1 4 5 5 5 , 1 0 1 2 3 4 5 -> 3 0 2 1 5 1 3 4 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 3 2 2 , 1 2 4 3 5 3 5 -> 5 1 3 2 2 4 3 5 , 1 4 3 5 2 5 2 -> 5 1 3 2 2 1 5 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 1 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 73-rule system { 0 0 1 2 -> 0 3 1 0 2 , 0 1 2 4 -> 0 3 2 3 1 4 , 0 5 0 5 -> 0 3 0 5 5 , 0 5 1 2 -> 1 0 1 5 2 , 0 5 1 2 -> 0 1 0 1 5 2 , 0 5 1 2 -> 0 3 2 3 1 5 , 0 5 4 2 -> 0 4 5 3 2 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 4 , 1 0 1 2 -> 1 1 3 0 2 , 1 0 1 2 -> 1 1 0 3 2 2 , 1 0 1 2 -> 1 1 0 3 2 3 , 1 0 5 4 -> 0 1 1 5 4 , 1 2 0 5 -> 0 3 2 3 1 5 , 1 2 0 5 -> 5 0 3 3 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 3 2 , 5 0 0 2 -> 5 0 3 0 2 , 5 0 1 2 -> 5 1 0 3 2 , 5 0 1 2 -> 5 1 0 3 2 3 , 0 0 0 1 2 -> 0 2 0 1 0 3 3 4 , 0 1 2 5 0 -> 3 3 2 2 0 0 1 5 , 0 3 5 2 2 -> 0 4 5 3 2 2 , 0 4 2 0 5 -> 0 4 0 3 2 1 5 , 0 4 2 5 2 -> 0 5 4 3 3 2 2 , 0 5 0 2 2 -> 0 2 5 0 3 2 , 0 5 0 5 1 -> 0 1 0 3 5 5 , 0 5 1 3 0 -> 0 0 1 1 5 3 , 0 5 2 2 4 -> 0 5 3 2 2 4 , 0 5 2 3 1 -> 0 1 5 3 2 2 2 , 0 5 2 4 1 -> 0 4 3 2 5 1 , 0 5 3 5 2 -> 0 0 3 5 5 2 , 0 5 5 3 1 -> 5 0 1 5 3 3 2 , 1 0 5 5 1 -> 0 4 5 1 5 1 , 1 1 2 2 0 -> 1 1 3 2 2 0 , 1 1 2 3 4 -> 1 1 3 2 2 4 , 1 1 3 5 2 -> 1 1 5 3 3 2 , 1 5 0 5 0 -> 0 1 5 3 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 3 2 2 , 5 0 2 0 5 -> 5 0 3 3 2 0 5 , 5 0 2 3 4 -> 5 0 3 2 3 4 , 5 5 0 1 2 -> 5 5 3 0 2 1 , 0 0 0 5 1 2 -> 0 0 1 5 0 2 4 , 0 0 1 2 4 1 -> 1 3 0 2 3 0 4 1 , 0 0 2 1 2 0 -> 0 1 0 3 2 2 2 0 , 0 0 2 3 0 5 -> 0 0 3 0 3 2 5 , 0 0 5 2 3 4 -> 0 4 0 3 1 2 5 , 0 0 5 5 3 4 -> 1 4 1 0 0 3 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 3 5 , 0 1 3 1 5 2 -> 1 0 1 5 3 3 2 , 0 1 4 4 0 5 -> 4 3 0 0 1 5 4 , 0 2 5 3 5 1 -> 0 3 3 2 2 1 5 5 , 0 5 0 0 5 4 -> 0 1 0 1 0 4 5 5 , 0 5 1 2 1 4 -> 1 1 5 3 2 2 0 4 , 0 5 5 1 2 5 -> 0 2 1 5 5 4 5 , 1 0 0 2 3 4 -> 1 4 0 0 3 3 2 , 1 0 1 3 5 1 -> 0 1 1 1 5 3 2 2 , 1 0 5 4 2 1 -> 0 1 1 5 3 4 2 , 1 2 1 2 0 0 -> 0 3 2 2 1 0 1 , 1 4 1 0 0 5 -> 0 0 1 5 4 2 1 , 1 4 3 5 0 2 -> 0 3 3 2 1 5 4 , 0 0 1 2 3 5 5 -> 5 1 5 0 3 0 2 1 , 0 0 2 3 4 2 1 -> 0 0 4 1 3 2 3 2 , 0 1 0 0 5 3 4 -> 0 3 0 5 0 4 3 1 , 0 1 2 4 4 0 5 -> 5 4 0 1 0 3 2 4 , 0 5 2 5 1 3 4 -> 1 4 5 2 0 3 1 5 , 0 5 5 0 2 5 1 -> 5 3 0 0 1 5 2 5 , 0 5 5 2 5 3 4 -> 0 3 2 1 4 5 5 5 , 1 0 1 2 3 4 5 -> 3 0 2 1 5 1 3 4 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 3 2 2 , 1 2 4 3 5 3 5 -> 5 1 3 2 2 4 3 5 , 1 4 3 5 2 5 2 -> 5 1 3 2 2 1 5 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 4->3, 3->4, 5->5 }, it remains to prove termination of the 69-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 0 5 1 2 -> 1 0 1 5 2 , 0 5 1 2 -> 0 1 0 1 5 2 , 0 5 1 2 -> 0 4 2 4 1 5 , 0 5 3 2 -> 0 3 5 4 2 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 4 5 2 2 -> 0 3 5 4 2 2 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 3 2 5 2 -> 0 5 3 4 4 2 2 , 0 5 0 2 2 -> 0 2 5 0 4 2 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 2 2 3 -> 0 5 4 2 2 3 , 0 5 2 4 1 -> 0 1 5 4 2 2 2 , 0 5 2 3 1 -> 0 3 4 2 5 1 , 0 5 4 5 2 -> 0 0 4 5 5 2 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 0 5 1 2 -> 0 0 1 5 0 2 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 2 4 3 -> 0 3 0 4 1 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 1 2 1 3 -> 1 1 5 4 2 2 0 3 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 0 5 3 2 1 -> 0 1 1 5 4 3 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 2 5 1 4 3 -> 1 3 5 2 0 4 1 5 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 0 5 5 2 5 4 3 -> 0 4 2 1 3 5 5 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 64-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 0 5 3 2 -> 0 3 5 4 2 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 4 5 2 2 -> 0 3 5 4 2 2 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 3 2 5 2 -> 0 5 3 4 4 2 2 , 0 5 0 2 2 -> 0 2 5 0 4 2 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 2 2 3 -> 0 5 4 2 2 3 , 0 5 2 4 1 -> 0 1 5 4 2 2 2 , 0 5 2 3 1 -> 0 3 4 2 5 1 , 0 5 4 5 2 -> 0 0 4 5 5 2 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 2 4 3 -> 0 3 0 4 1 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 0 5 3 2 1 -> 0 1 1 5 4 3 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 2 5 1 4 3 -> 1 3 5 2 0 4 1 5 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 0 5 5 2 5 4 3 -> 0 4 2 1 3 5 5 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 62-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 4 5 2 2 -> 0 3 5 4 2 2 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 3 2 5 2 -> 0 5 3 4 4 2 2 , 0 5 0 2 2 -> 0 2 5 0 4 2 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 2 2 3 -> 0 5 4 2 2 3 , 0 5 2 4 1 -> 0 1 5 4 2 2 2 , 0 5 2 3 1 -> 0 3 4 2 5 1 , 0 5 4 5 2 -> 0 0 4 5 5 2 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 2 4 3 -> 0 3 0 4 1 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 2 5 1 4 3 -> 1 3 5 2 0 4 1 5 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 0 5 5 2 5 4 3 -> 0 4 2 1 3 5 5 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 61-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 3 2 5 2 -> 0 5 3 4 4 2 2 , 0 5 0 2 2 -> 0 2 5 0 4 2 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 2 2 3 -> 0 5 4 2 2 3 , 0 5 2 4 1 -> 0 1 5 4 2 2 2 , 0 5 2 3 1 -> 0 3 4 2 5 1 , 0 5 4 5 2 -> 0 0 4 5 5 2 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 2 4 3 -> 0 3 0 4 1 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 2 5 1 4 3 -> 1 3 5 2 0 4 1 5 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 0 5 5 2 5 4 3 -> 0 4 2 1 3 5 5 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 60-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 2 2 -> 0 2 5 0 4 2 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 2 2 3 -> 0 5 4 2 2 3 , 0 5 2 4 1 -> 0 1 5 4 2 2 2 , 0 5 2 3 1 -> 0 3 4 2 5 1 , 0 5 4 5 2 -> 0 0 4 5 5 2 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 2 4 3 -> 0 3 0 4 1 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 2 5 1 4 3 -> 1 3 5 2 0 4 1 5 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 0 5 5 2 5 4 3 -> 0 4 2 1 3 5 5 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 59-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 2 2 3 -> 0 5 4 2 2 3 , 0 5 2 4 1 -> 0 1 5 4 2 2 2 , 0 5 2 3 1 -> 0 3 4 2 5 1 , 0 5 4 5 2 -> 0 0 4 5 5 2 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 2 4 3 -> 0 3 0 4 1 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 2 5 1 4 3 -> 1 3 5 2 0 4 1 5 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 0 5 5 2 5 4 3 -> 0 4 2 1 3 5 5 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 58-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 0 5 5 2 -> 5 0 1 5 2 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 2 2 3 -> 0 5 4 2 2 3 , 0 5 2 4 1 -> 0 1 5 4 2 2 2 , 0 5 2 3 1 -> 0 3 4 2 5 1 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 2 4 3 -> 0 3 0 4 1 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 2 5 1 4 3 -> 1 3 5 2 0 4 1 5 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 0 5 5 2 5 4 3 -> 0 4 2 1 3 5 5 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 1 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 51-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 4 1 5 2 -> 1 0 1 5 4 4 2 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 1 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 50-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 0 2 4 3 2 1 -> 0 0 3 1 4 2 4 2 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 49-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 5 0 1 2 -> 5 1 0 4 2 , 5 0 1 2 -> 5 1 0 4 2 4 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 5 5 0 1 2 -> 5 5 4 0 2 1 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 10: 0 is interpreted by / \ | 1 0 1 0 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 46-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 1 4 5 2 -> 1 1 5 4 4 2 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 12: 0 is interpreted by / \ | 1 0 0 0 0 0 1 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 45-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 0 5 0 5 -> 0 4 0 5 5 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 0 5 1 -> 0 1 0 4 5 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 0 0 5 3 -> 0 1 0 1 0 3 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 42-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 0 5 5 1 2 5 -> 0 2 1 5 5 3 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 41-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 5 0 0 2 -> 5 0 4 0 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 10: 0 is interpreted by / \ | 1 0 1 0 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 40-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 0 5 5 0 2 5 1 -> 5 4 0 0 1 5 2 5 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 14: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 1 0 0 0 0 0 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 39-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 0 5 5 4 1 -> 5 0 1 5 4 4 2 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 1 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 38-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 3 2 0 5 -> 0 3 0 4 2 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 12: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 37-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 0 2 5 4 5 1 -> 0 4 4 2 2 1 5 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 13: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 1 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 36-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 2 4 0 5 -> 0 0 4 0 4 2 5 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 13: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 35-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 1 0 2 0 2 2 -> 1 1 0 2 0 4 2 2 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 14: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 1 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 34-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 0 1 3 3 0 5 -> 3 4 0 0 1 5 3 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 13: 0 is interpreted by / \ | 1 0 1 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 33-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 0 5 5 4 3 -> 1 3 1 0 0 4 5 5 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 32-rule system { 0 1 2 3 -> 0 4 2 4 1 3 , 1 0 0 5 -> 1 1 0 0 1 5 3 , 1 0 1 2 -> 1 1 4 0 2 , 1 0 1 2 -> 1 1 0 4 2 2 , 1 0 1 2 -> 1 1 0 4 2 4 , 1 0 5 3 -> 0 1 1 5 3 , 1 2 0 5 -> 0 4 2 4 1 5 , 1 2 0 5 -> 5 0 4 4 2 1 , 1 5 0 2 -> 1 1 0 1 1 5 2 , 1 5 1 2 -> 0 1 1 5 2 , 1 5 1 2 -> 1 0 1 5 4 2 , 0 1 2 5 0 -> 4 4 2 2 0 0 1 5 , 0 5 1 4 0 -> 0 0 1 1 5 4 , 1 0 5 5 1 -> 0 3 5 1 5 1 , 1 1 2 2 0 -> 1 1 4 2 2 0 , 1 1 2 4 3 -> 1 1 4 2 2 3 , 1 5 0 5 0 -> 0 1 5 4 5 1 0 , 1 5 5 1 2 -> 1 5 1 1 5 4 2 2 , 5 0 2 0 5 -> 5 0 4 4 2 0 5 , 5 0 2 4 3 -> 5 0 4 2 4 3 , 0 0 2 1 2 0 -> 0 1 0 4 2 2 2 0 , 0 1 2 5 5 5 -> 0 2 5 1 5 4 5 , 1 0 0 2 4 3 -> 1 3 0 0 4 4 2 , 1 0 1 4 5 1 -> 0 1 1 1 5 4 2 2 , 1 2 1 2 0 0 -> 0 4 2 2 1 0 1 , 1 3 1 0 0 5 -> 0 0 1 5 3 2 1 , 1 3 4 5 0 2 -> 0 4 4 2 1 5 3 , 0 1 0 0 5 4 3 -> 0 4 0 5 0 3 4 1 , 0 1 2 3 3 0 5 -> 5 3 0 1 0 4 2 3 , 1 0 1 2 4 3 5 -> 4 0 2 1 5 1 4 3 , 1 2 3 4 5 4 5 -> 5 1 4 2 2 3 4 5 , 1 3 4 5 2 5 2 -> 5 1 4 2 2 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 1 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 1->0, 0->1, 5->2, 3->3, 2->4, 4->5 }, it remains to prove termination of the 30-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 1 2 3 -> 1 0 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 1 4 -> 0 0 1 0 0 2 4 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 0 4 5 3 -> 0 0 5 4 4 3 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 2 1 4 1 2 -> 2 1 5 5 4 1 2 , 2 1 4 5 3 -> 2 1 5 4 5 3 , 1 1 4 0 4 1 -> 1 0 1 5 4 4 4 1 , 1 0 4 2 2 2 -> 1 4 2 0 2 5 2 , 0 1 1 4 5 3 -> 0 3 1 1 5 5 4 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 1 0 1 1 2 5 3 -> 1 5 1 2 1 3 5 0 , 0 1 0 4 5 3 2 -> 5 1 4 0 2 0 5 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 28-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 1 2 3 -> 1 0 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 1 4 -> 0 0 1 0 0 2 4 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 0 4 5 3 -> 0 0 5 4 4 3 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 2 1 4 1 2 -> 2 1 5 5 4 1 2 , 1 1 4 0 4 1 -> 1 0 1 5 4 4 4 1 , 1 0 4 2 2 2 -> 1 4 2 0 2 5 2 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 1 0 1 1 2 5 3 -> 1 5 1 2 1 3 5 0 , 0 1 0 4 5 3 2 -> 5 1 4 0 2 0 5 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 27-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 1 2 3 -> 1 0 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 1 4 -> 0 0 1 0 0 2 4 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 0 4 5 3 -> 0 0 5 4 4 3 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 2 1 4 1 2 -> 2 1 5 5 4 1 2 , 1 1 4 0 4 1 -> 1 0 1 5 4 4 4 1 , 1 0 4 2 2 2 -> 1 4 2 0 2 5 2 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 0 1 0 4 5 3 2 -> 5 1 4 0 2 0 5 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 1 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 25-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 1 2 3 -> 1 0 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 1 4 -> 0 0 1 0 0 2 4 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 2 1 4 1 2 -> 2 1 5 5 4 1 2 , 1 1 4 0 4 1 -> 1 0 1 5 4 4 4 1 , 1 0 4 2 2 2 -> 1 4 2 0 2 5 2 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 24-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 1 4 -> 0 0 1 0 0 2 4 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 2 1 4 1 2 -> 2 1 5 5 4 1 2 , 1 1 4 0 4 1 -> 1 0 1 5 4 4 4 1 , 1 0 4 2 2 2 -> 1 4 2 0 2 5 2 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 12: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 23-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 1 4 -> 0 0 1 0 0 2 4 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 1 1 4 0 4 1 -> 1 0 1 5 4 4 4 1 , 1 0 4 2 2 2 -> 1 4 2 0 2 5 2 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 13: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 22-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 1 4 -> 0 0 1 0 0 2 4 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 1 1 4 0 4 1 -> 1 0 1 5 4 4 4 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 1 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 20-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 2 2 0 4 -> 0 2 0 0 2 5 4 4 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 1 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 19-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 1 0 4 -> 0 0 5 1 4 , 0 1 0 4 -> 0 0 1 5 4 4 , 0 1 0 4 -> 0 0 1 5 4 5 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 3 5 2 1 4 -> 1 5 5 4 0 2 3 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 1 1 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 15-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 , 0 3 5 2 4 2 4 -> 2 0 5 4 4 0 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 1 1 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 1 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 14-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 , 0 4 3 5 2 5 2 -> 2 0 5 4 4 3 5 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 13-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 1 2 2 0 -> 1 3 2 0 2 0 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 12-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 4 1 2 -> 1 5 4 5 0 2 , 0 4 1 2 -> 2 1 5 5 4 0 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 1 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 10-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 , 0 3 0 1 1 2 -> 1 1 0 2 3 4 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 9-rule system { 0 1 1 2 -> 0 0 1 1 0 2 3 , 0 2 0 4 -> 1 0 0 2 4 , 0 2 0 4 -> 0 1 0 2 5 4 , 1 0 4 2 1 -> 5 5 4 4 1 1 0 2 , 1 2 0 5 1 -> 1 1 0 0 2 5 , 0 0 4 4 1 -> 0 0 5 4 4 1 , 0 2 1 2 1 -> 1 0 2 5 2 0 1 , 0 1 0 5 2 0 -> 1 0 0 0 2 5 4 4 , 0 4 0 4 1 1 -> 1 5 4 4 0 1 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 0->0, 2->1, 4->2, 1->3, 5->4 }, it remains to prove termination of the 8-rule system { 0 1 0 2 -> 3 0 0 1 2 , 0 1 0 2 -> 0 3 0 1 4 2 , 3 0 2 1 3 -> 4 4 2 2 3 3 0 1 , 3 1 0 4 3 -> 3 3 0 0 1 4 , 0 0 2 2 3 -> 0 0 4 2 2 3 , 0 1 3 1 3 -> 3 0 1 4 1 0 3 , 0 3 0 4 1 0 -> 3 0 0 0 1 4 2 2 , 0 2 0 2 3 3 -> 3 4 2 2 0 3 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 is interpreted by / \ | 1 0 1 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 1 | | 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 1 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 1 0 0 0 | \ / 3 is interpreted by / \ | 1 0 1 1 1 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 | | 0 1 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | | 0 0 0 0 0 | \ / After renaming modulo { 3->0, 1->1, 0->2, 4->3, 2->4 }, it remains to prove termination of the 5-rule system { 0 1 2 3 0 -> 0 0 2 2 1 3 , 2 2 4 4 0 -> 2 2 3 4 4 0 , 2 1 0 1 0 -> 0 2 1 3 1 2 0 , 2 0 2 3 1 2 -> 0 2 2 2 1 3 4 4 , 2 4 2 4 0 0 -> 0 3 4 4 2 0 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 2->0, 4->1, 0->2, 3->3, 1->4 }, it remains to prove termination of the 4-rule system { 0 0 1 1 2 -> 0 0 3 1 1 2 , 0 4 2 4 2 -> 2 0 4 3 4 0 2 , 0 2 0 3 4 0 -> 2 0 0 0 4 3 1 1 , 0 1 0 1 2 2 -> 2 3 1 1 0 2 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 1 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4 }, it remains to prove termination of the 3-rule system { 0 0 1 1 2 -> 0 0 3 1 1 2 , 0 4 2 4 2 -> 2 0 4 3 4 0 2 , 0 1 0 1 2 2 -> 2 3 1 1 0 2 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 1 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 4->1, 2->2, 3->3, 1->4 }, it remains to prove termination of the 2-rule system { 0 1 2 1 2 -> 2 0 1 3 1 0 2 , 0 4 0 4 2 2 -> 2 3 4 4 0 2 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 4->1, 2->2, 3->3 }, it remains to prove termination of the 1-rule system { 0 1 0 1 2 2 -> 2 3 1 1 0 2 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 1 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / After renaming modulo { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.