YES After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 3-rule system { 0 1 2 3 4 5 1 -> 0 2 3 4 5 1 1 0 1 2 3 4 5 0 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 1 2 3 4 5 1 1 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 1 2 3 4 5 1 1 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 } Applying the dependency pairs transformation. After renaming modulo { (0,true)->0, (1,false)->1, (2,false)->2, (3,false)->3, (4,false)->4, (5,false)->5, (0,false)->6 }, it remains to prove termination of the 8-rule system { 0 1 2 3 4 5 1 -> 0 2 3 4 5 1 1 6 1 2 3 4 5 6 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 0 1 2 3 4 5 6 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 0 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 0 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 0 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 , 6 1 2 3 4 5 1 ->= 6 2 3 4 5 1 1 6 1 2 3 4 5 6 1 2 3 4 5 , 6 1 2 3 4 5 1 ->= 1 2 3 4 5 1 1 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 , 6 1 2 3 4 5 1 ->= 1 2 3 4 5 1 1 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 1 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 3 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6 }, it remains to prove termination of the 6-rule system { 0 1 2 3 4 5 1 -> 0 1 2 3 4 5 6 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 0 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 , 0 1 2 3 4 5 1 -> 0 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 , 6 1 2 3 4 5 1 ->= 6 2 3 4 5 1 1 6 1 2 3 4 5 6 1 2 3 4 5 , 6 1 2 3 4 5 1 ->= 1 2 3 4 5 1 1 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 , 6 1 2 3 4 5 1 ->= 1 2 3 4 5 1 1 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 14: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 6->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 3-rule system { 0 1 2 3 4 5 1 ->= 0 2 3 4 5 1 1 0 1 2 3 4 5 0 1 2 3 4 5 , 0 1 2 3 4 5 1 ->= 1 2 3 4 5 1 1 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 , 0 1 2 3 4 5 1 ->= 1 2 3 4 5 1 1 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 } The system is trivially terminating.