YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 186 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(1(2(x1))) -> 0(2(1(0(x1)))) 0(1(2(x1))) -> 1(0(2(3(x1)))) 0(1(2(x1))) -> 0(2(4(1(5(x1))))) 0(1(2(x1))) -> 0(3(2(1(0(x1))))) 0(1(2(x1))) -> 1(0(3(2(3(x1))))) 0(1(2(x1))) -> 0(1(3(4(2(3(x1)))))) 0(5(2(x1))) -> 0(2(4(5(3(x1))))) 0(5(2(x1))) -> 5(4(2(3(0(4(x1)))))) 2(0(1(x1))) -> 3(0(2(1(x1)))) 2(0(1(x1))) -> 0(2(1(1(4(x1))))) 2(0(1(x1))) -> 0(3(2(4(1(x1))))) 2(0(1(x1))) -> 3(0(2(1(4(x1))))) 2(0(1(x1))) -> 0(2(2(3(4(1(x1)))))) 2(0(1(x1))) -> 0(3(2(3(1(1(x1)))))) 2(0(1(x1))) -> 4(0(4(2(1(4(x1)))))) 2(5(1(x1))) -> 0(2(1(5(1(x1))))) 2(5(1(x1))) -> 1(4(5(4(2(x1))))) 2(5(1(x1))) -> 5(0(2(1(4(x1))))) 2(5(1(x1))) -> 5(2(1(4(1(x1))))) 2(5(1(x1))) -> 1(5(0(2(4(1(x1)))))) 2(5(1(x1))) -> 5(2(1(1(1(1(x1)))))) 0(1(2(1(x1)))) -> 3(1(4(0(2(1(x1)))))) 0(1(3(1(x1)))) -> 5(0(3(1(1(x1))))) 0(1(3(1(x1)))) -> 1(0(3(4(2(1(x1)))))) 0(1(5(1(x1)))) -> 5(0(3(1(1(x1))))) 0(2(1(2(x1)))) -> 0(2(2(1(5(x1))))) 0(2(5(1(x1)))) -> 1(1(5(0(2(1(x1)))))) 0(5(3(1(x1)))) -> 0(1(4(4(3(5(x1)))))) 0(5(5(2(x1)))) -> 5(4(2(3(5(0(x1)))))) 2(0(1(2(x1)))) -> 0(2(3(2(1(1(x1)))))) 2(0(1(2(x1)))) -> 4(0(2(1(1(2(x1)))))) 2(0(4(1(x1)))) -> 3(0(2(4(1(x1))))) 2(0(5(1(x1)))) -> 5(4(2(1(0(x1))))) 2(2(5(1(x1)))) -> 3(2(2(4(5(1(x1)))))) 2(4(0(1(x1)))) -> 1(0(2(4(4(x1))))) 2(4(0(1(x1)))) -> 3(0(0(2(4(1(x1)))))) 2(4(0(1(x1)))) -> 5(4(0(2(1(1(x1)))))) 2(5(2(1(x1)))) -> 1(5(2(2(3(1(x1)))))) 2(5(4(1(x1)))) -> 4(5(2(1(4(4(x1)))))) 2(5(5(1(x1)))) -> 1(5(4(2(4(5(x1)))))) 2(5(5(2(x1)))) -> 5(5(2(3(2(x1))))) 0(1(3(0(1(x1))))) -> 0(3(1(0(1(1(x1)))))) 0(2(4(3(1(x1))))) -> 1(3(4(2(3(0(x1)))))) 0(2(4(3(1(x1))))) -> 4(0(3(2(1(0(x1)))))) 0(2(5(3(1(x1))))) -> 5(0(2(3(5(1(x1)))))) 2(0(5(4(1(x1))))) -> 0(4(5(3(2(1(x1)))))) 2(2(0(1(2(x1))))) -> 2(4(0(2(2(1(x1)))))) 2(4(0(5(1(x1))))) -> 1(4(5(0(4(2(x1)))))) 2(4(2(3(1(x1))))) -> 4(2(2(3(3(1(x1)))))) 2(5(2(0(1(x1))))) -> 0(2(4(1(5(2(x1)))))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: 0^1(1(2(x1))) -> 0^1(2(1(0(x1)))) 0^1(1(2(x1))) -> 2^1(1(0(x1))) 0^1(1(2(x1))) -> 0^1(x1) 0^1(1(2(x1))) -> 0^1(2(3(x1))) 0^1(1(2(x1))) -> 2^1(3(x1)) 0^1(1(2(x1))) -> 0^1(2(4(1(5(x1))))) 0^1(1(2(x1))) -> 2^1(4(1(5(x1)))) 0^1(1(2(x1))) -> 0^1(3(2(1(0(x1))))) 0^1(1(2(x1))) -> 0^1(3(2(3(x1)))) 0^1(1(2(x1))) -> 0^1(1(3(4(2(3(x1)))))) 0^1(5(2(x1))) -> 0^1(2(4(5(3(x1))))) 0^1(5(2(x1))) -> 2^1(4(5(3(x1)))) 0^1(5(2(x1))) -> 2^1(3(0(4(x1)))) 0^1(5(2(x1))) -> 0^1(4(x1)) 2^1(0(1(x1))) -> 0^1(2(1(x1))) 2^1(0(1(x1))) -> 2^1(1(x1)) 2^1(0(1(x1))) -> 0^1(2(1(1(4(x1))))) 2^1(0(1(x1))) -> 2^1(1(1(4(x1)))) 2^1(0(1(x1))) -> 0^1(3(2(4(1(x1))))) 2^1(0(1(x1))) -> 2^1(4(1(x1))) 2^1(0(1(x1))) -> 0^1(2(1(4(x1)))) 2^1(0(1(x1))) -> 2^1(1(4(x1))) 2^1(0(1(x1))) -> 0^1(2(2(3(4(1(x1)))))) 2^1(0(1(x1))) -> 2^1(2(3(4(1(x1))))) 2^1(0(1(x1))) -> 2^1(3(4(1(x1)))) 2^1(0(1(x1))) -> 0^1(3(2(3(1(1(x1)))))) 2^1(0(1(x1))) -> 2^1(3(1(1(x1)))) 2^1(0(1(x1))) -> 0^1(4(2(1(4(x1))))) 2^1(5(1(x1))) -> 0^1(2(1(5(1(x1))))) 2^1(5(1(x1))) -> 2^1(1(5(1(x1)))) 2^1(5(1(x1))) -> 2^1(x1) 2^1(5(1(x1))) -> 0^1(2(1(4(x1)))) 2^1(5(1(x1))) -> 2^1(1(4(x1))) 2^1(5(1(x1))) -> 2^1(1(4(1(x1)))) 2^1(5(1(x1))) -> 0^1(2(4(1(x1)))) 2^1(5(1(x1))) -> 2^1(4(1(x1))) 2^1(5(1(x1))) -> 2^1(1(1(1(1(x1))))) 0^1(1(2(1(x1)))) -> 0^1(2(1(x1))) 0^1(1(3(1(x1)))) -> 0^1(3(1(1(x1)))) 0^1(1(3(1(x1)))) -> 0^1(3(4(2(1(x1))))) 0^1(1(3(1(x1)))) -> 2^1(1(x1)) 0^1(1(5(1(x1)))) -> 0^1(3(1(1(x1)))) 0^1(2(1(2(x1)))) -> 0^1(2(2(1(5(x1))))) 0^1(2(1(2(x1)))) -> 2^1(2(1(5(x1)))) 0^1(2(1(2(x1)))) -> 2^1(1(5(x1))) 0^1(2(5(1(x1)))) -> 0^1(2(1(x1))) 0^1(2(5(1(x1)))) -> 2^1(1(x1)) 0^1(5(3(1(x1)))) -> 0^1(1(4(4(3(5(x1)))))) 0^1(5(5(2(x1)))) -> 2^1(3(5(0(x1)))) 0^1(5(5(2(x1)))) -> 0^1(x1) 2^1(0(1(2(x1)))) -> 0^1(2(3(2(1(1(x1)))))) 2^1(0(1(2(x1)))) -> 2^1(3(2(1(1(x1))))) 2^1(0(1(2(x1)))) -> 2^1(1(1(x1))) 2^1(0(1(2(x1)))) -> 0^1(2(1(1(2(x1))))) 2^1(0(1(2(x1)))) -> 2^1(1(1(2(x1)))) 2^1(0(4(1(x1)))) -> 0^1(2(4(1(x1)))) 2^1(0(4(1(x1)))) -> 2^1(4(1(x1))) 2^1(0(5(1(x1)))) -> 2^1(1(0(x1))) 2^1(0(5(1(x1)))) -> 0^1(x1) 2^1(2(5(1(x1)))) -> 2^1(2(4(5(1(x1))))) 2^1(2(5(1(x1)))) -> 2^1(4(5(1(x1)))) 2^1(4(0(1(x1)))) -> 0^1(2(4(4(x1)))) 2^1(4(0(1(x1)))) -> 2^1(4(4(x1))) 2^1(4(0(1(x1)))) -> 0^1(0(2(4(1(x1))))) 2^1(4(0(1(x1)))) -> 0^1(2(4(1(x1)))) 2^1(4(0(1(x1)))) -> 2^1(4(1(x1))) 2^1(4(0(1(x1)))) -> 0^1(2(1(1(x1)))) 2^1(4(0(1(x1)))) -> 2^1(1(1(x1))) 2^1(5(2(1(x1)))) -> 2^1(2(3(1(x1)))) 2^1(5(2(1(x1)))) -> 2^1(3(1(x1))) 2^1(5(4(1(x1)))) -> 2^1(1(4(4(x1)))) 2^1(5(5(1(x1)))) -> 2^1(4(5(x1))) 2^1(5(5(2(x1)))) -> 2^1(3(2(x1))) 0^1(1(3(0(1(x1))))) -> 0^1(3(1(0(1(1(x1)))))) 0^1(1(3(0(1(x1))))) -> 0^1(1(1(x1))) 0^1(2(4(3(1(x1))))) -> 2^1(3(0(x1))) 0^1(2(4(3(1(x1))))) -> 0^1(x1) 0^1(2(4(3(1(x1))))) -> 0^1(3(2(1(0(x1))))) 0^1(2(4(3(1(x1))))) -> 2^1(1(0(x1))) 0^1(2(5(3(1(x1))))) -> 0^1(2(3(5(1(x1))))) 0^1(2(5(3(1(x1))))) -> 2^1(3(5(1(x1)))) 2^1(0(5(4(1(x1))))) -> 0^1(4(5(3(2(1(x1)))))) 2^1(0(5(4(1(x1))))) -> 2^1(1(x1)) 2^1(2(0(1(2(x1))))) -> 2^1(4(0(2(2(1(x1)))))) 2^1(2(0(1(2(x1))))) -> 0^1(2(2(1(x1)))) 2^1(2(0(1(2(x1))))) -> 2^1(2(1(x1))) 2^1(2(0(1(2(x1))))) -> 2^1(1(x1)) 2^1(4(0(5(1(x1))))) -> 0^1(4(2(x1))) 2^1(4(0(5(1(x1))))) -> 2^1(x1) 2^1(4(2(3(1(x1))))) -> 2^1(2(3(3(1(x1))))) 2^1(4(2(3(1(x1))))) -> 2^1(3(3(1(x1)))) 2^1(5(2(0(1(x1))))) -> 0^1(2(4(1(5(2(x1)))))) 2^1(5(2(0(1(x1))))) -> 2^1(4(1(5(2(x1))))) 2^1(5(2(0(1(x1))))) -> 2^1(x1) The TRS R consists of the following rules: 0(1(2(x1))) -> 0(2(1(0(x1)))) 0(1(2(x1))) -> 1(0(2(3(x1)))) 0(1(2(x1))) -> 0(2(4(1(5(x1))))) 0(1(2(x1))) -> 0(3(2(1(0(x1))))) 0(1(2(x1))) -> 1(0(3(2(3(x1))))) 0(1(2(x1))) -> 0(1(3(4(2(3(x1)))))) 0(5(2(x1))) -> 0(2(4(5(3(x1))))) 0(5(2(x1))) -> 5(4(2(3(0(4(x1)))))) 2(0(1(x1))) -> 3(0(2(1(x1)))) 2(0(1(x1))) -> 0(2(1(1(4(x1))))) 2(0(1(x1))) -> 0(3(2(4(1(x1))))) 2(0(1(x1))) -> 3(0(2(1(4(x1))))) 2(0(1(x1))) -> 0(2(2(3(4(1(x1)))))) 2(0(1(x1))) -> 0(3(2(3(1(1(x1)))))) 2(0(1(x1))) -> 4(0(4(2(1(4(x1)))))) 2(5(1(x1))) -> 0(2(1(5(1(x1))))) 2(5(1(x1))) -> 1(4(5(4(2(x1))))) 2(5(1(x1))) -> 5(0(2(1(4(x1))))) 2(5(1(x1))) -> 5(2(1(4(1(x1))))) 2(5(1(x1))) -> 1(5(0(2(4(1(x1)))))) 2(5(1(x1))) -> 5(2(1(1(1(1(x1)))))) 0(1(2(1(x1)))) -> 3(1(4(0(2(1(x1)))))) 0(1(3(1(x1)))) -> 5(0(3(1(1(x1))))) 0(1(3(1(x1)))) -> 1(0(3(4(2(1(x1)))))) 0(1(5(1(x1)))) -> 5(0(3(1(1(x1))))) 0(2(1(2(x1)))) -> 0(2(2(1(5(x1))))) 0(2(5(1(x1)))) -> 1(1(5(0(2(1(x1)))))) 0(5(3(1(x1)))) -> 0(1(4(4(3(5(x1)))))) 0(5(5(2(x1)))) -> 5(4(2(3(5(0(x1)))))) 2(0(1(2(x1)))) -> 0(2(3(2(1(1(x1)))))) 2(0(1(2(x1)))) -> 4(0(2(1(1(2(x1)))))) 2(0(4(1(x1)))) -> 3(0(2(4(1(x1))))) 2(0(5(1(x1)))) -> 5(4(2(1(0(x1))))) 2(2(5(1(x1)))) -> 3(2(2(4(5(1(x1)))))) 2(4(0(1(x1)))) -> 1(0(2(4(4(x1))))) 2(4(0(1(x1)))) -> 3(0(0(2(4(1(x1)))))) 2(4(0(1(x1)))) -> 5(4(0(2(1(1(x1)))))) 2(5(2(1(x1)))) -> 1(5(2(2(3(1(x1)))))) 2(5(4(1(x1)))) -> 4(5(2(1(4(4(x1)))))) 2(5(5(1(x1)))) -> 1(5(4(2(4(5(x1)))))) 2(5(5(2(x1)))) -> 5(5(2(3(2(x1))))) 0(1(3(0(1(x1))))) -> 0(3(1(0(1(1(x1)))))) 0(2(4(3(1(x1))))) -> 1(3(4(2(3(0(x1)))))) 0(2(4(3(1(x1))))) -> 4(0(3(2(1(0(x1)))))) 0(2(5(3(1(x1))))) -> 5(0(2(3(5(1(x1)))))) 2(0(5(4(1(x1))))) -> 0(4(5(3(2(1(x1)))))) 2(2(0(1(2(x1))))) -> 2(4(0(2(2(1(x1)))))) 2(4(0(5(1(x1))))) -> 1(4(5(0(4(2(x1)))))) 2(4(2(3(1(x1))))) -> 4(2(2(3(3(1(x1)))))) 2(5(2(0(1(x1))))) -> 0(2(4(1(5(2(x1)))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 88 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: 0^1(5(5(2(x1)))) -> 0^1(x1) 0^1(1(2(x1))) -> 0^1(x1) 0^1(2(4(3(1(x1))))) -> 0^1(x1) The TRS R consists of the following rules: 0(1(2(x1))) -> 0(2(1(0(x1)))) 0(1(2(x1))) -> 1(0(2(3(x1)))) 0(1(2(x1))) -> 0(2(4(1(5(x1))))) 0(1(2(x1))) -> 0(3(2(1(0(x1))))) 0(1(2(x1))) -> 1(0(3(2(3(x1))))) 0(1(2(x1))) -> 0(1(3(4(2(3(x1)))))) 0(5(2(x1))) -> 0(2(4(5(3(x1))))) 0(5(2(x1))) -> 5(4(2(3(0(4(x1)))))) 2(0(1(x1))) -> 3(0(2(1(x1)))) 2(0(1(x1))) -> 0(2(1(1(4(x1))))) 2(0(1(x1))) -> 0(3(2(4(1(x1))))) 2(0(1(x1))) -> 3(0(2(1(4(x1))))) 2(0(1(x1))) -> 0(2(2(3(4(1(x1)))))) 2(0(1(x1))) -> 0(3(2(3(1(1(x1)))))) 2(0(1(x1))) -> 4(0(4(2(1(4(x1)))))) 2(5(1(x1))) -> 0(2(1(5(1(x1))))) 2(5(1(x1))) -> 1(4(5(4(2(x1))))) 2(5(1(x1))) -> 5(0(2(1(4(x1))))) 2(5(1(x1))) -> 5(2(1(4(1(x1))))) 2(5(1(x1))) -> 1(5(0(2(4(1(x1)))))) 2(5(1(x1))) -> 5(2(1(1(1(1(x1)))))) 0(1(2(1(x1)))) -> 3(1(4(0(2(1(x1)))))) 0(1(3(1(x1)))) -> 5(0(3(1(1(x1))))) 0(1(3(1(x1)))) -> 1(0(3(4(2(1(x1)))))) 0(1(5(1(x1)))) -> 5(0(3(1(1(x1))))) 0(2(1(2(x1)))) -> 0(2(2(1(5(x1))))) 0(2(5(1(x1)))) -> 1(1(5(0(2(1(x1)))))) 0(5(3(1(x1)))) -> 0(1(4(4(3(5(x1)))))) 0(5(5(2(x1)))) -> 5(4(2(3(5(0(x1)))))) 2(0(1(2(x1)))) -> 0(2(3(2(1(1(x1)))))) 2(0(1(2(x1)))) -> 4(0(2(1(1(2(x1)))))) 2(0(4(1(x1)))) -> 3(0(2(4(1(x1))))) 2(0(5(1(x1)))) -> 5(4(2(1(0(x1))))) 2(2(5(1(x1)))) -> 3(2(2(4(5(1(x1)))))) 2(4(0(1(x1)))) -> 1(0(2(4(4(x1))))) 2(4(0(1(x1)))) -> 3(0(0(2(4(1(x1)))))) 2(4(0(1(x1)))) -> 5(4(0(2(1(1(x1)))))) 2(5(2(1(x1)))) -> 1(5(2(2(3(1(x1)))))) 2(5(4(1(x1)))) -> 4(5(2(1(4(4(x1)))))) 2(5(5(1(x1)))) -> 1(5(4(2(4(5(x1)))))) 2(5(5(2(x1)))) -> 5(5(2(3(2(x1))))) 0(1(3(0(1(x1))))) -> 0(3(1(0(1(1(x1)))))) 0(2(4(3(1(x1))))) -> 1(3(4(2(3(0(x1)))))) 0(2(4(3(1(x1))))) -> 4(0(3(2(1(0(x1)))))) 0(2(5(3(1(x1))))) -> 5(0(2(3(5(1(x1)))))) 2(0(5(4(1(x1))))) -> 0(4(5(3(2(1(x1)))))) 2(2(0(1(2(x1))))) -> 2(4(0(2(2(1(x1)))))) 2(4(0(5(1(x1))))) -> 1(4(5(0(4(2(x1)))))) 2(4(2(3(1(x1))))) -> 4(2(2(3(3(1(x1)))))) 2(5(2(0(1(x1))))) -> 0(2(4(1(5(2(x1)))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: 0^1(5(5(2(x1)))) -> 0^1(x1) 0^1(1(2(x1))) -> 0^1(x1) 0^1(2(4(3(1(x1))))) -> 0^1(x1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *0^1(5(5(2(x1)))) -> 0^1(x1) The graph contains the following edges 1 > 1 *0^1(1(2(x1))) -> 0^1(x1) The graph contains the following edges 1 > 1 *0^1(2(4(3(1(x1))))) -> 0^1(x1) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: 2^1(4(0(5(1(x1))))) -> 2^1(x1) 2^1(5(1(x1))) -> 2^1(x1) 2^1(5(2(0(1(x1))))) -> 2^1(x1) The TRS R consists of the following rules: 0(1(2(x1))) -> 0(2(1(0(x1)))) 0(1(2(x1))) -> 1(0(2(3(x1)))) 0(1(2(x1))) -> 0(2(4(1(5(x1))))) 0(1(2(x1))) -> 0(3(2(1(0(x1))))) 0(1(2(x1))) -> 1(0(3(2(3(x1))))) 0(1(2(x1))) -> 0(1(3(4(2(3(x1)))))) 0(5(2(x1))) -> 0(2(4(5(3(x1))))) 0(5(2(x1))) -> 5(4(2(3(0(4(x1)))))) 2(0(1(x1))) -> 3(0(2(1(x1)))) 2(0(1(x1))) -> 0(2(1(1(4(x1))))) 2(0(1(x1))) -> 0(3(2(4(1(x1))))) 2(0(1(x1))) -> 3(0(2(1(4(x1))))) 2(0(1(x1))) -> 0(2(2(3(4(1(x1)))))) 2(0(1(x1))) -> 0(3(2(3(1(1(x1)))))) 2(0(1(x1))) -> 4(0(4(2(1(4(x1)))))) 2(5(1(x1))) -> 0(2(1(5(1(x1))))) 2(5(1(x1))) -> 1(4(5(4(2(x1))))) 2(5(1(x1))) -> 5(0(2(1(4(x1))))) 2(5(1(x1))) -> 5(2(1(4(1(x1))))) 2(5(1(x1))) -> 1(5(0(2(4(1(x1)))))) 2(5(1(x1))) -> 5(2(1(1(1(1(x1)))))) 0(1(2(1(x1)))) -> 3(1(4(0(2(1(x1)))))) 0(1(3(1(x1)))) -> 5(0(3(1(1(x1))))) 0(1(3(1(x1)))) -> 1(0(3(4(2(1(x1)))))) 0(1(5(1(x1)))) -> 5(0(3(1(1(x1))))) 0(2(1(2(x1)))) -> 0(2(2(1(5(x1))))) 0(2(5(1(x1)))) -> 1(1(5(0(2(1(x1)))))) 0(5(3(1(x1)))) -> 0(1(4(4(3(5(x1)))))) 0(5(5(2(x1)))) -> 5(4(2(3(5(0(x1)))))) 2(0(1(2(x1)))) -> 0(2(3(2(1(1(x1)))))) 2(0(1(2(x1)))) -> 4(0(2(1(1(2(x1)))))) 2(0(4(1(x1)))) -> 3(0(2(4(1(x1))))) 2(0(5(1(x1)))) -> 5(4(2(1(0(x1))))) 2(2(5(1(x1)))) -> 3(2(2(4(5(1(x1)))))) 2(4(0(1(x1)))) -> 1(0(2(4(4(x1))))) 2(4(0(1(x1)))) -> 3(0(0(2(4(1(x1)))))) 2(4(0(1(x1)))) -> 5(4(0(2(1(1(x1)))))) 2(5(2(1(x1)))) -> 1(5(2(2(3(1(x1)))))) 2(5(4(1(x1)))) -> 4(5(2(1(4(4(x1)))))) 2(5(5(1(x1)))) -> 1(5(4(2(4(5(x1)))))) 2(5(5(2(x1)))) -> 5(5(2(3(2(x1))))) 0(1(3(0(1(x1))))) -> 0(3(1(0(1(1(x1)))))) 0(2(4(3(1(x1))))) -> 1(3(4(2(3(0(x1)))))) 0(2(4(3(1(x1))))) -> 4(0(3(2(1(0(x1)))))) 0(2(5(3(1(x1))))) -> 5(0(2(3(5(1(x1)))))) 2(0(5(4(1(x1))))) -> 0(4(5(3(2(1(x1)))))) 2(2(0(1(2(x1))))) -> 2(4(0(2(2(1(x1)))))) 2(4(0(5(1(x1))))) -> 1(4(5(0(4(2(x1)))))) 2(4(2(3(1(x1))))) -> 4(2(2(3(3(1(x1)))))) 2(5(2(0(1(x1))))) -> 0(2(4(1(5(2(x1)))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: 2^1(4(0(5(1(x1))))) -> 2^1(x1) 2^1(5(1(x1))) -> 2^1(x1) 2^1(5(2(0(1(x1))))) -> 2^1(x1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *2^1(4(0(5(1(x1))))) -> 2^1(x1) The graph contains the following edges 1 > 1 *2^1(5(1(x1))) -> 2^1(x1) The graph contains the following edges 1 > 1 *2^1(5(2(0(1(x1))))) -> 2^1(x1) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES