YES After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5 }, it remains to prove termination of the 5-rule system { 0 1 2 3 4 -> 0 2 1 3 4 , 0 5 1 2 4 3 -> 0 5 2 1 4 3 , 0 5 2 4 1 3 -> 0 1 5 2 4 3 , 0 5 3 1 2 4 -> 0 1 5 3 2 4 , 0 5 4 1 3 2 -> 0 5 4 3 1 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 is interpreted by / \ | 1 0 1 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 1 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 1 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 1 | | 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 1 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 | | 0 1 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | | 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 5->1, 1->2, 2->3, 4->4, 3->5 }, it remains to prove termination of the 4-rule system { 0 1 2 3 4 5 -> 0 1 3 2 4 5 , 0 1 3 4 2 5 -> 0 2 1 3 4 5 , 0 1 5 2 3 4 -> 0 2 1 5 3 4 , 0 1 4 2 5 3 -> 0 1 4 5 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 3->2, 4->3, 2->4, 5->5 }, it remains to prove termination of the 3-rule system { 0 1 2 3 4 5 -> 0 4 1 2 3 5 , 0 1 5 4 2 3 -> 0 4 1 5 2 3 , 0 1 3 4 5 2 -> 0 1 3 5 4 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 5->2, 4->3, 2->4, 3->5 }, it remains to prove termination of the 2-rule system { 0 1 2 3 4 5 -> 0 3 1 2 4 5 , 0 1 5 3 2 4 -> 0 1 5 2 3 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 5->2, 3->3, 2->4, 4->5 }, it remains to prove termination of the 1-rule system { 0 1 2 3 4 5 -> 0 1 2 4 3 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 is interpreted by / \ | 1 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 | \ / After renaming modulo { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.