YES After renaming modulo { a->0, b->1, c->2 }, it remains to prove termination of the 1-rule system { 0 1 0 2 0 0 0 0 0 -> 0 0 0 0 0 0 1 0 2 0 1 0 2 } The system was reversed. After renaming modulo { 0->0, 2->1, 1->2 }, it remains to prove termination of the 1-rule system { 0 0 0 0 0 1 0 2 0 -> 1 0 2 0 1 0 2 0 0 0 0 0 0 } Applying sparse 2-tiling [Hofbauer/Geser/Waldmann, FSCD 2019]. After renaming modulo { (0,0)->0, (0,1)->1, (1,0)->2, (0,2)->3, (2,0)->4, (0,4)->5, (1,1)->6, (2,1)->7 }, it remains to prove termination of the 12-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 0 0 0 0 0 1 2 3 4 5 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 5 , 2 0 0 0 0 1 2 3 4 0 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 0 , 2 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 , 2 0 0 0 0 1 2 3 4 3 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 3 , 2 0 0 0 0 1 2 3 4 5 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 5 , 4 0 0 0 0 1 2 3 4 0 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 0 , 4 0 0 0 0 1 2 3 4 1 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 3 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 3 , 4 0 0 0 0 1 2 3 4 5 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 7 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7 }, it remains to prove termination of the 11-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 0 0 0 0 0 1 2 3 4 5 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 5 , 2 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 , 2 0 0 0 0 1 2 3 4 3 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 3 , 2 0 0 0 0 1 2 3 4 5 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 5 , 4 0 0 0 0 1 2 3 4 0 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 0 , 4 0 0 0 0 1 2 3 4 1 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 3 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 3 , 4 0 0 0 0 1 2 3 4 5 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 7 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7 }, it remains to prove termination of the 10-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 0 0 0 0 0 1 2 3 4 5 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 5 , 2 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 , 2 0 0 0 0 1 2 3 4 5 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 5 , 4 0 0 0 0 1 2 3 4 0 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 0 , 4 0 0 0 0 1 2 3 4 1 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 3 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 3 , 4 0 0 0 0 1 2 3 4 5 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 7 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7 }, it remains to prove termination of the 9-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 0 0 0 0 0 1 2 3 4 5 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 5 , 2 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 0 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 0 , 4 0 0 0 0 1 2 3 4 1 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 3 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 3 , 4 0 0 0 0 1 2 3 4 5 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 7 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7 }, it remains to prove termination of the 8-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 0 0 0 0 0 1 2 3 4 5 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 5 , 2 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 1 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 3 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 3 , 4 0 0 0 0 1 2 3 4 5 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 7 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7 }, it remains to prove termination of the 7-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 0 0 0 0 0 1 2 3 4 5 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 5 , 2 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 1 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 5 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 7 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7 }, it remains to prove termination of the 6-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 0 0 0 0 0 1 2 3 4 5 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 5 , 2 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 1 -> 7 2 3 4 1 2 3 4 0 0 0 0 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 1 1 1 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 7 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 6->5, 7->6 }, it remains to prove termination of the 5-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 2 0 0 0 0 1 2 3 4 1 -> 5 2 3 4 1 2 3 4 0 0 0 0 0 1 , 4 0 0 0 0 1 2 3 4 1 -> 6 2 3 4 1 2 3 4 0 0 0 0 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 6->5 }, it remains to prove termination of the 4-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 , 4 0 0 0 0 1 2 3 4 1 -> 5 2 3 4 1 2 3 4 0 0 0 0 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4 }, it remains to prove termination of the 3-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 , 0 0 0 0 0 1 2 3 4 3 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 1 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 1 1 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4 }, it remains to prove termination of the 2-rule system { 0 0 0 0 0 1 2 3 4 0 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 0 , 0 0 0 0 0 1 2 3 4 1 -> 1 2 3 4 1 2 3 4 0 0 0 0 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 11: 0 is interpreted by / \ | 2 0 1 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 1 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 1 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 1 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 1 0 0 0 1 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.