YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 33 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) MNOCProof [EQUIVALENT, 0 ms] (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QDPOrderProof [EQUIVALENT, 390 ms] (16) QDP (17) DependencyGraphProof [EQUIVALENT, 0 ms] (18) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) p(p(s(x1))) -> p(x1) p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: FOO(0(x1)) -> P(p(p(s(s(s(p(s(x1)))))))) FOO(0(x1)) -> P(p(s(s(s(p(s(x1))))))) FOO(0(x1)) -> P(s(s(s(p(s(x1)))))) FOO(0(x1)) -> P(s(x1)) FOO(s(x1)) -> P(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) FOO(s(x1)) -> P(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))) FOO(s(x1)) -> P(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1))))))))))))))))))))))) FOO(s(x1)) -> P(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))) FOO(s(x1)) -> P(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1))))))))))))))))))) FOO(s(x1)) -> P(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))) FOO(s(x1)) -> FOO(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) FOO(s(x1)) -> P(p(s(s(p(s(bar(p(p(s(s(p(s(x1))))))))))))) FOO(s(x1)) -> P(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))) FOO(s(x1)) -> P(s(bar(p(p(s(s(p(s(x1))))))))) FOO(s(x1)) -> BAR(p(p(s(s(p(s(x1))))))) FOO(s(x1)) -> P(p(s(s(p(s(x1)))))) FOO(s(x1)) -> P(s(s(p(s(x1))))) FOO(s(x1)) -> P(s(x1)) BAR(0(x1)) -> P(s(s(s(x1)))) BAR(s(x1)) -> P(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) BAR(s(x1)) -> P(p(s(s(foo(s(p(p(s(s(x1)))))))))) BAR(s(x1)) -> P(s(s(foo(s(p(p(s(s(x1))))))))) BAR(s(x1)) -> FOO(s(p(p(s(s(x1)))))) BAR(s(x1)) -> P(p(s(s(x1)))) BAR(s(x1)) -> P(s(s(x1))) P(p(s(x1))) -> P(x1) The TRS R consists of the following rules: foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) p(p(s(x1))) -> p(x1) p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 22 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: P(p(s(x1))) -> P(x1) The TRS R consists of the following rules: foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) p(p(s(x1))) -> p(x1) p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: P(p(s(x1))) -> P(x1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *P(p(s(x1))) -> P(x1) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: FOO(s(x1)) -> BAR(p(p(s(s(p(s(x1))))))) BAR(s(x1)) -> FOO(s(p(p(s(s(x1)))))) FOO(s(x1)) -> FOO(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) The TRS R consists of the following rules: foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) p(p(s(x1))) -> p(x1) p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: FOO(s(x1)) -> BAR(p(p(s(s(p(s(x1))))))) BAR(s(x1)) -> FOO(s(p(p(s(s(x1)))))) FOO(s(x1)) -> FOO(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) The TRS R consists of the following rules: foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) p(p(s(x1))) -> p(x1) p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) The set Q consists of the following terms: foo(0(x0)) foo(s(x0)) bar(0(x0)) bar(s(x0)) p(s(x0)) p(0(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: FOO(s(x1)) -> BAR(p(p(s(s(p(s(x1))))))) BAR(s(x1)) -> FOO(s(p(p(s(s(x1)))))) FOO(s(x1)) -> FOO(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) The TRS R consists of the following rules: p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) The set Q consists of the following terms: foo(0(x0)) foo(s(x0)) bar(0(x0)) bar(s(x0)) p(s(x0)) p(0(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. FOO(s(x1)) -> BAR(p(p(s(s(p(s(x1))))))) FOO(s(x1)) -> FOO(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( BAR_1(x_1) ) = x_1 + 2 POL( FOO_1(x_1) ) = x_1 + 2 POL( p_1(x_1) ) = max{0, x_1 - 2} POL( s_1(x_1) ) = x_1 + 2 POL( 0_1(x_1) ) = max{0, -2} POL( bar_1(x_1) ) = x_1 + 1 POL( foo_1(x_1) ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: BAR(s(x1)) -> FOO(s(p(p(s(s(x1)))))) The TRS R consists of the following rules: p(s(x1)) -> x1 p(0(x1)) -> 0(s(s(s(s(x1))))) bar(0(x1)) -> 0(p(s(s(s(x1))))) bar(s(x1)) -> p(s(p(p(s(s(foo(s(p(p(s(s(x1)))))))))))) foo(s(x1)) -> p(s(p(p(p(s(s(p(s(s(p(s(foo(p(p(s(s(p(s(bar(p(p(s(s(p(s(x1)))))))))))))))))))))))))) foo(0(x1)) -> 0(s(p(p(p(s(s(s(p(s(x1)))))))))) The set Q consists of the following terms: foo(0(x0)) foo(s(x0)) bar(0(x0)) bar(s(x0)) p(s(x0)) p(0(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (18) TRUE