YES Problem 1: (VAR v_NonEmpty:S x1:S) (RULES a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) ) Problem 1: Dependency Pairs Processor: -> Pairs: A(x1:S) -> B(b(x1:S)) A(x1:S) -> B(x1:S) B(b(b(x1:S))) -> A(x1:S) -> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) Problem 1: SCC Processor: -> Pairs: A(x1:S) -> B(b(x1:S)) A(x1:S) -> B(x1:S) B(b(b(x1:S))) -> A(x1:S) -> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: A(x1:S) -> B(b(x1:S)) A(x1:S) -> B(x1:S) B(b(b(x1:S))) -> A(x1:S) ->->-> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) Problem 1: Reduction Pair Processor: -> Pairs: A(x1:S) -> B(b(x1:S)) A(x1:S) -> B(x1:S) B(b(b(x1:S))) -> A(x1:S) -> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) -> Usable rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [a](X) = X + 2 [b](X) = X + 1 [A](X) = X + 2 [B](X) = X Problem 1: SCC Processor: -> Pairs: A(x1:S) -> B(x1:S) B(b(b(x1:S))) -> A(x1:S) -> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: A(x1:S) -> B(x1:S) B(b(b(x1:S))) -> A(x1:S) ->->-> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) Problem 1: Subterm Processor: -> Pairs: A(x1:S) -> B(x1:S) B(b(b(x1:S))) -> A(x1:S) -> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) ->Projection: pi(A) = 1 pi(B) = 1 Problem 1: SCC Processor: -> Pairs: A(x1:S) -> B(x1:S) -> Rules: a(x1:S) -> b(b(x1:S)) b(b(b(x1:S))) -> a(x1:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite.