YES After renaming modulo { c->0, a->1, b->2 }, it remains to prove termination of the 1-rule system { 0 1 1 2 0 1 -> 1 1 2 0 0 1 1 2 0 } The system was reversed. After renaming modulo { 1->0, 0->1, 2->2 }, it remains to prove termination of the 1-rule system { 0 1 2 0 0 1 -> 1 2 0 0 1 1 2 0 0 } Applying sparse 2-tiling [Hofbauer/Geser/Waldmann, FSCD 2019]. After renaming modulo { (0,0)->0, (0,1)->1, (1,2)->2, (2,0)->3, (1,1)->4, (0,2)->5, (2,1)->6 }, it remains to prove termination of the 4-rule system { 0 1 2 3 0 1 4 -> 1 2 3 0 1 4 2 3 0 1 , 0 1 2 3 0 1 2 -> 1 2 3 0 1 4 2 3 0 5 , 3 1 2 3 0 1 4 -> 6 2 3 0 1 4 2 3 0 1 , 3 1 2 3 0 1 2 -> 6 2 3 0 1 4 2 3 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6 }, it remains to prove termination of the 3-rule system { 0 1 2 3 0 1 4 -> 1 2 3 0 1 4 2 3 0 1 , 0 1 2 3 0 1 2 -> 1 2 3 0 1 4 2 3 0 5 , 3 1 2 3 0 1 4 -> 6 2 3 0 1 4 2 3 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 1 0 0 0 1 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6 }, it remains to prove termination of the 2-rule system { 0 1 2 3 0 1 2 -> 1 2 3 0 1 4 2 3 0 5 , 3 1 2 3 0 1 4 -> 6 2 3 0 1 4 2 3 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 14: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / 6 is interpreted by / \ | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ / After renaming modulo { 3->0, 1->1, 2->2, 0->3, 4->4, 6->5 }, it remains to prove termination of the 1-rule system { 0 1 2 0 3 1 4 -> 5 2 0 3 1 4 2 0 3 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 8: 0 is interpreted by / \ | 1 0 1 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 1 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 1 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 1 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 1 | | 0 0 0 0 0 0 0 0 | \ / 2 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 1 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 3 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 1 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / 4 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | \ / 5 is interpreted by / \ | 1 0 0 0 0 0 0 0 | | 0 1 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 | \ / After renaming modulo { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.