YES Problem: t(f(x1)) -> t(c(n(x1))) n(f(x1)) -> f(n(x1)) o(f(x1)) -> f(o(x1)) n(s(x1)) -> f(s(x1)) o(s(x1)) -> f(s(x1)) c(f(x1)) -> f(c(x1)) c(n(x1)) -> n(c(x1)) c(o(x1)) -> o(c(x1)) c(o(x1)) -> o(x1) Proof: Matrix Interpretation Processor: dim=1 interpretation: [o](x0) = x0 + 8, [t](x0) = x0, [c](x0) = x0, [s](x0) = 8x0, [f](x0) = x0, [n](x0) = x0 orientation: t(f(x1)) = x1 >= x1 = t(c(n(x1))) n(f(x1)) = x1 >= x1 = f(n(x1)) o(f(x1)) = x1 + 8 >= x1 + 8 = f(o(x1)) n(s(x1)) = 8x1 >= 8x1 = f(s(x1)) o(s(x1)) = 8x1 + 8 >= 8x1 = f(s(x1)) c(f(x1)) = x1 >= x1 = f(c(x1)) c(n(x1)) = x1 >= x1 = n(c(x1)) c(o(x1)) = x1 + 8 >= x1 + 8 = o(c(x1)) c(o(x1)) = x1 + 8 >= x1 + 8 = o(x1) problem: t(f(x1)) -> t(c(n(x1))) n(f(x1)) -> f(n(x1)) o(f(x1)) -> f(o(x1)) n(s(x1)) -> f(s(x1)) c(f(x1)) -> f(c(x1)) c(n(x1)) -> n(c(x1)) c(o(x1)) -> o(c(x1)) c(o(x1)) -> o(x1) Matrix Interpretation Processor: dim=1 interpretation: [o](x0) = 6x0 + 1, [t](x0) = 2x0 + 1, [c](x0) = x0, [s](x0) = x0 + 1, [f](x0) = 4x0 + 1, [n](x0) = 4x0 + 1 orientation: t(f(x1)) = 8x1 + 3 >= 8x1 + 3 = t(c(n(x1))) n(f(x1)) = 16x1 + 5 >= 16x1 + 5 = f(n(x1)) o(f(x1)) = 24x1 + 7 >= 24x1 + 5 = f(o(x1)) n(s(x1)) = 4x1 + 5 >= 4x1 + 5 = f(s(x1)) c(f(x1)) = 4x1 + 1 >= 4x1 + 1 = f(c(x1)) c(n(x1)) = 4x1 + 1 >= 4x1 + 1 = n(c(x1)) c(o(x1)) = 6x1 + 1 >= 6x1 + 1 = o(c(x1)) c(o(x1)) = 6x1 + 1 >= 6x1 + 1 = o(x1) problem: t(f(x1)) -> t(c(n(x1))) n(f(x1)) -> f(n(x1)) n(s(x1)) -> f(s(x1)) c(f(x1)) -> f(c(x1)) c(n(x1)) -> n(c(x1)) c(o(x1)) -> o(c(x1)) c(o(x1)) -> o(x1) Matrix Interpretation Processor: dim=3 interpretation: [1 1 1] [0] [o](x0) = [0 0 0]x0 + [0] [0 0 1] [1], [1 0 0] [0] [t](x0) = [0 0 1]x0 + [1] [0 0 0] [0], [1 0 1] [0] [c](x0) = [0 0 0]x0 + [1] [0 0 1] [0], [1 0 1] [0] [s](x0) = [1 1 1]x0 + [1] [0 0 0] [0], [1 0 1] [f](x0) = [0 0 0]x0 [0 0 1] , [n](x0) = x0 orientation: [1 0 1] [0] [1 0 1] [0] t(f(x1)) = [0 0 1]x1 + [1] >= [0 0 1]x1 + [1] = t(c(n(x1))) [0 0 0] [0] [0 0 0] [0] [1 0 1] [1 0 1] n(f(x1)) = [0 0 0]x1 >= [0 0 0]x1 = f(n(x1)) [0 0 1] [0 0 1] [1 0 1] [0] [1 0 1] n(s(x1)) = [1 1 1]x1 + [1] >= [0 0 0]x1 = f(s(x1)) [0 0 0] [0] [0 0 0] [1 0 2] [0] [1 0 2] c(f(x1)) = [0 0 0]x1 + [1] >= [0 0 0]x1 = f(c(x1)) [0 0 1] [0] [0 0 1] [1 0 1] [0] [1 0 1] [0] c(n(x1)) = [0 0 0]x1 + [1] >= [0 0 0]x1 + [1] = n(c(x1)) [0 0 1] [0] [0 0 1] [0] [1 1 2] [1] [1 0 2] [1] c(o(x1)) = [0 0 0]x1 + [1] >= [0 0 0]x1 + [0] = o(c(x1)) [0 0 1] [1] [0 0 1] [1] [1 1 2] [1] [1 1 1] [0] c(o(x1)) = [0 0 0]x1 + [1] >= [0 0 0]x1 + [0] = o(x1) [0 0 1] [1] [0 0 1] [1] problem: t(f(x1)) -> t(c(n(x1))) n(f(x1)) -> f(n(x1)) n(s(x1)) -> f(s(x1)) c(f(x1)) -> f(c(x1)) c(n(x1)) -> n(c(x1)) c(o(x1)) -> o(c(x1)) String Reversal Processor: f(t(x1)) -> n(c(t(x1))) f(n(x1)) -> n(f(x1)) s(n(x1)) -> s(f(x1)) f(c(x1)) -> c(f(x1)) n(c(x1)) -> c(n(x1)) o(c(x1)) -> c(o(x1)) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [0] [o](x0) = [1 0 0]x0 + [1] [0 0 0] [0], [1 0 0] [0] [t](x0) = [1 0 0]x0 + [1] [0 0 0] [0], [1 0 0] [c](x0) = [0 0 0]x0 [0 0 0] , [1 1 0] [0] [s](x0) = [1 0 0]x0 + [0] [1 1 0] [1], [1 0 0] [0] [f](x0) = [0 1 0]x0 + [0] [0 0 0] [1], [1 0 0] [0] [n](x0) = [1 1 0]x0 + [1] [0 0 0] [1] orientation: [1 0 0] [0] [1 0 0] [0] f(t(x1)) = [1 0 0]x1 + [1] >= [1 0 0]x1 + [1] = n(c(t(x1))) [0 0 0] [1] [0 0 0] [1] [1 0 0] [0] [1 0 0] [0] f(n(x1)) = [1 1 0]x1 + [1] >= [1 1 0]x1 + [1] = n(f(x1)) [0 0 0] [1] [0 0 0] [1] [2 1 0] [1] [1 1 0] [0] s(n(x1)) = [1 0 0]x1 + [0] >= [1 0 0]x1 + [0] = s(f(x1)) [2 1 0] [2] [1 1 0] [1] [1 0 0] [0] [1 0 0] f(c(x1)) = [0 0 0]x1 + [0] >= [0 0 0]x1 = c(f(x1)) [0 0 0] [1] [0 0 0] [1 0 0] [0] [1 0 0] n(c(x1)) = [1 0 0]x1 + [1] >= [0 0 0]x1 = c(n(x1)) [0 0 0] [1] [0 0 0] [1 0 0] [0] [1 0 0] o(c(x1)) = [1 0 0]x1 + [1] >= [0 0 0]x1 = c(o(x1)) [0 0 0] [0] [0 0 0] problem: f(t(x1)) -> n(c(t(x1))) f(n(x1)) -> n(f(x1)) f(c(x1)) -> c(f(x1)) n(c(x1)) -> c(n(x1)) o(c(x1)) -> c(o(x1)) WPO Processor: algebra: Sum weight function: w0 = 0 w(c) = w(t) = w(f) = 2 w(o) = 1 w(n) = 0 status function: st(o) = st(c) = st(n) = st(t) = st(f) = [0] precedence: f > o ~ n > c ~ t problem: Qed