YES After renaming modulo { a->0, b->1, C->2, c->3, A->4, B->5 }, it remains to prove termination of the 24-rule system { 0 0 1 1 -> 2 2 , 1 1 3 3 -> 4 4 , 3 3 0 0 -> 5 5 , 4 4 2 2 -> 1 1 , 2 2 5 5 -> 0 0 , 5 5 4 4 -> 3 3 , 0 0 0 0 0 0 0 0 0 0 -> 4 4 4 4 4 4 , 4 4 4 4 4 4 4 4 -> 0 0 0 0 0 0 0 0 , 1 1 1 1 1 1 1 1 1 1 -> 5 5 5 5 5 5 , 5 5 5 5 5 5 5 5 -> 1 1 1 1 1 1 1 1 , 3 3 3 3 3 3 3 3 3 3 -> 2 2 2 2 2 2 , 2 2 2 2 2 2 2 2 -> 3 3 3 3 3 3 3 3 , 5 5 0 0 0 0 0 0 0 0 -> 3 3 4 4 4 4 4 4 , 4 4 4 4 4 4 1 1 -> 0 0 0 0 0 0 0 0 2 2 , 2 2 1 1 1 1 1 1 1 1 -> 0 0 5 5 5 5 5 5 , 5 5 5 5 5 5 3 3 -> 1 1 1 1 1 1 1 1 4 4 , 4 4 3 3 3 3 3 3 3 3 -> 1 1 2 2 2 2 2 2 , 2 2 2 2 2 2 0 0 -> 3 3 3 3 3 3 3 3 5 5 , 0 0 4 4 -> , 4 4 0 0 -> , 1 1 5 5 -> , 5 5 1 1 -> , 3 3 2 2 -> , 2 2 3 3 -> } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 2 | | 0 1 | \ / 1 is interpreted by / \ | 1 2 | | 0 1 | \ / 2 is interpreted by / \ | 1 3 | | 0 1 | \ / 3 is interpreted by / \ | 1 2 | | 0 1 | \ / 4 is interpreted by / \ | 1 3 | | 0 1 | \ / 5 is interpreted by / \ | 1 3 | | 0 1 | \ / After renaming modulo { 5->0, 0->1, 3->2, 4->3, 1->4, 2->5 }, it remains to prove termination of the 6-rule system { 0 0 1 1 1 1 1 1 1 1 -> 2 2 3 3 3 3 3 3 , 3 3 3 3 3 3 4 4 -> 1 1 1 1 1 1 1 1 5 5 , 5 5 4 4 4 4 4 4 4 4 -> 1 1 0 0 0 0 0 0 , 0 0 0 0 0 0 2 2 -> 4 4 4 4 4 4 4 4 3 3 , 3 3 2 2 2 2 2 2 2 2 -> 4 4 5 5 5 5 5 5 , 5 5 5 5 5 5 1 1 -> 2 2 2 2 2 2 2 2 0 0 } Applying the dependency pairs transformation. After renaming modulo { (0,true)->0, (0,false)->1, (1,false)->2, (3,true)->3, (3,false)->4, (4,false)->5, (5,true)->6, (5,false)->7, (2,false)->8 }, it remains to prove termination of the 30-rule system { 0 1 2 2 2 2 2 2 2 2 -> 3 4 4 4 4 4 , 0 1 2 2 2 2 2 2 2 2 -> 3 4 4 4 4 , 0 1 2 2 2 2 2 2 2 2 -> 3 4 4 4 , 0 1 2 2 2 2 2 2 2 2 -> 3 4 4 , 0 1 2 2 2 2 2 2 2 2 -> 3 4 , 0 1 2 2 2 2 2 2 2 2 -> 3 , 3 4 4 4 4 4 5 5 -> 6 7 , 3 4 4 4 4 4 5 5 -> 6 , 6 7 5 5 5 5 5 5 5 5 -> 0 1 1 1 1 1 , 6 7 5 5 5 5 5 5 5 5 -> 0 1 1 1 1 , 6 7 5 5 5 5 5 5 5 5 -> 0 1 1 1 , 6 7 5 5 5 5 5 5 5 5 -> 0 1 1 , 6 7 5 5 5 5 5 5 5 5 -> 0 1 , 6 7 5 5 5 5 5 5 5 5 -> 0 , 0 1 1 1 1 1 8 8 -> 3 4 , 0 1 1 1 1 1 8 8 -> 3 , 3 4 8 8 8 8 8 8 8 8 -> 6 7 7 7 7 7 , 3 4 8 8 8 8 8 8 8 8 -> 6 7 7 7 7 , 3 4 8 8 8 8 8 8 8 8 -> 6 7 7 7 , 3 4 8 8 8 8 8 8 8 8 -> 6 7 7 , 3 4 8 8 8 8 8 8 8 8 -> 6 7 , 3 4 8 8 8 8 8 8 8 8 -> 6 , 6 7 7 7 7 7 2 2 -> 0 1 , 6 7 7 7 7 7 2 2 -> 0 , 1 1 2 2 2 2 2 2 2 2 ->= 8 8 4 4 4 4 4 4 , 4 4 4 4 4 4 5 5 ->= 2 2 2 2 2 2 2 2 7 7 , 7 7 5 5 5 5 5 5 5 5 ->= 2 2 1 1 1 1 1 1 , 1 1 1 1 1 1 8 8 ->= 5 5 5 5 5 5 5 5 4 4 , 4 4 8 8 8 8 8 8 8 8 ->= 5 5 7 7 7 7 7 7 , 7 7 7 7 7 7 2 2 ->= 8 8 8 8 8 8 8 8 1 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 3 | | 0 1 | \ / 1 is interpreted by / \ | 1 3 | | 0 1 | \ / 2 is interpreted by / \ | 1 2 | | 0 1 | \ / 3 is interpreted by / \ | 1 6 | | 0 1 | \ / 4 is interpreted by / \ | 1 3 | | 0 1 | \ / 5 is interpreted by / \ | 1 2 | | 0 1 | \ / 6 is interpreted by / \ | 1 0 | | 0 1 | \ / 7 is interpreted by / \ | 1 3 | | 0 1 | \ / 8 is interpreted by / \ | 1 2 | | 0 1 | \ / After renaming modulo { 1->0, 2->1, 8->2, 4->3, 5->4, 7->5 }, it remains to prove termination of the 6-rule system { 0 0 1 1 1 1 1 1 1 1 ->= 2 2 3 3 3 3 3 3 , 3 3 3 3 3 3 4 4 ->= 1 1 1 1 1 1 1 1 5 5 , 5 5 4 4 4 4 4 4 4 4 ->= 1 1 0 0 0 0 0 0 , 0 0 0 0 0 0 2 2 ->= 4 4 4 4 4 4 4 4 3 3 , 3 3 2 2 2 2 2 2 2 2 ->= 4 4 5 5 5 5 5 5 , 5 5 5 5 5 5 1 1 ->= 2 2 2 2 2 2 2 2 0 0 } The system is trivially terminating.