YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 3 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 1 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 2415 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 36 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: b(b(b(a(b(x1))))) -> b(a(b(b(a(b(x1)))))) b(a(b(b(x1)))) -> b(b(a(b(a(b(x1)))))) b(a(b(a(a(b(b(x1))))))) -> b(a(a(b(a(a(b(b(b(a(b(x1))))))))))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: B(b(b(a(b(x1))))) -> B(a(b(b(a(b(x1)))))) B(a(b(b(x1)))) -> B(b(a(b(a(b(x1)))))) B(a(b(b(x1)))) -> B(a(b(a(b(x1))))) B(a(b(b(x1)))) -> B(a(b(x1))) B(a(b(a(a(b(b(x1))))))) -> B(a(a(b(a(a(b(b(b(a(b(x1))))))))))) B(a(b(a(a(b(b(x1))))))) -> B(a(a(b(b(b(a(b(x1)))))))) B(a(b(a(a(b(b(x1))))))) -> B(b(b(a(b(x1))))) B(a(b(a(a(b(b(x1))))))) -> B(b(a(b(x1)))) B(a(b(a(a(b(b(x1))))))) -> B(a(b(x1))) The TRS R consists of the following rules: b(b(b(a(b(x1))))) -> b(a(b(b(a(b(x1)))))) b(a(b(b(x1)))) -> b(b(a(b(a(b(x1)))))) b(a(b(a(a(b(b(x1))))))) -> b(a(a(b(a(a(b(b(b(a(b(x1))))))))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: B(a(b(b(x1)))) -> B(b(a(b(a(b(x1)))))) B(b(b(a(b(x1))))) -> B(a(b(b(a(b(x1)))))) B(a(b(b(x1)))) -> B(a(b(a(b(x1))))) B(a(b(b(x1)))) -> B(a(b(x1))) B(a(b(a(a(b(b(x1))))))) -> B(b(b(a(b(x1))))) B(a(b(a(a(b(b(x1))))))) -> B(b(a(b(x1)))) B(a(b(a(a(b(b(x1))))))) -> B(a(b(x1))) The TRS R consists of the following rules: b(b(b(a(b(x1))))) -> b(a(b(b(a(b(x1)))))) b(a(b(b(x1)))) -> b(b(a(b(a(b(x1)))))) b(a(b(a(a(b(b(x1))))))) -> b(a(a(b(a(a(b(b(b(a(b(x1))))))))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. B(a(b(a(a(b(b(x1))))))) -> B(b(b(a(b(x1))))) B(a(b(a(a(b(b(x1))))))) -> B(b(a(b(x1)))) B(a(b(a(a(b(b(x1))))))) -> B(a(b(x1))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(B(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL(a(x_1)) = [[1A], [0A], [0A]] + [[0A, -I, 0A], [0A, 0A, 0A], [1A, 0A, 0A]] * x_1 >>> <<< POL(b(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, -I], [0A, 0A, 0A], [0A, 0A, -I]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(a(b(b(x1)))) -> b(b(a(b(a(b(x1)))))) b(b(b(a(b(x1))))) -> b(a(b(b(a(b(x1)))))) b(a(b(a(a(b(b(x1))))))) -> b(a(a(b(a(a(b(b(b(a(b(x1))))))))))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: B(a(b(b(x1)))) -> B(b(a(b(a(b(x1)))))) B(b(b(a(b(x1))))) -> B(a(b(b(a(b(x1)))))) B(a(b(b(x1)))) -> B(a(b(a(b(x1))))) B(a(b(b(x1)))) -> B(a(b(x1))) The TRS R consists of the following rules: b(b(b(a(b(x1))))) -> b(a(b(b(a(b(x1)))))) b(a(b(b(x1)))) -> b(b(a(b(a(b(x1)))))) b(a(b(a(a(b(b(x1))))))) -> b(a(a(b(a(a(b(b(b(a(b(x1))))))))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. B(b(b(a(b(x1))))) -> B(a(b(b(a(b(x1)))))) B(a(b(b(x1)))) -> B(a(b(a(b(x1))))) B(a(b(b(x1)))) -> B(a(b(x1))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( B_1(x_1) ) = max{0, 2x_1 - 2} POL( b_1(x_1) ) = x_1 + 2 POL( a_1(x_1) ) = max{0, x_1 - 2} The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(a(b(b(x1)))) -> b(b(a(b(a(b(x1)))))) b(b(b(a(b(x1))))) -> b(a(b(b(a(b(x1)))))) b(a(b(a(a(b(b(x1))))))) -> b(a(a(b(a(a(b(b(b(a(b(x1))))))))))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: B(a(b(b(x1)))) -> B(b(a(b(a(b(x1)))))) The TRS R consists of the following rules: b(b(b(a(b(x1))))) -> b(a(b(b(a(b(x1)))))) b(a(b(b(x1)))) -> b(b(a(b(a(b(x1)))))) b(a(b(a(a(b(b(x1))))))) -> b(a(a(b(a(a(b(b(b(a(b(x1))))))))))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (10) TRUE