YES Problem 1: (VAR x y) (THEORY (AC f)) (RULES f(g(f(h(a),a)),a) -> f(h(a),f(a,a)) f(g(h(a)),f(f(a,a),a)) -> f(g(f(h(a),a)),a) f(h(a),a) -> f(h(a),b) f(h(a),g(a)) -> f(g(h(a)),a) f(i(x,y),f(a,y)) -> f(g(i(x,y)),y) ) Problem 1: Reduction Order Processor: -> Rules: f(g(f(h(a),a)),a) -> f(h(a),f(a,a)) f(g(h(a)),f(f(a,a),a)) -> f(g(f(h(a),a)),a) f(h(a),a) -> f(h(a),b) f(h(a),g(a)) -> f(g(h(a)),a) f(i(x,y),f(a,y)) -> f(g(i(x,y)),y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 [a] = 2 [b] = 2 [g](X) = X + 1 [h](X) = 2.X + 2 [i](X1,X2) = 2.X1 + X2 + 1 Problem 1: Reduction Order Processor: -> Rules: f(g(h(a)),f(f(a,a),a)) -> f(g(f(h(a),a)),a) f(h(a),a) -> f(h(a),b) f(h(a),g(a)) -> f(g(h(a)),a) f(i(x,y),f(a,y)) -> f(g(i(x,y)),y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 + 2 [a] = 2 [b] = 0 [g](X) = X + 2 [h](X) = 2.X + 2 [i](X1,X2) = 2.X1 + X2 + 1 Problem 1: Reduction Order Processor: -> Rules: f(h(a),a) -> f(h(a),b) f(h(a),g(a)) -> f(g(h(a)),a) f(i(x,y),f(a,y)) -> f(g(i(x,y)),y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 + 2 [a] = 1 [b] = 0 [g](X) = X + 2 [h](X) = X + 2 [i](X1,X2) = X1 + 2.X2 Problem 1: Reduction Order Processor: -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) f(i(x,y),f(a,y)) -> f(g(i(x,y)),y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 + 2 [a] = 1 [b] = 0 [g](X) = X + 2 [h](X) = X [i](X1,X2) = X1 + X2 Problem 1: Dependency Pairs Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(f(h(a),g(a)),x2) -> F(f(g(h(a)),a),x2) F(f(h(a),g(a)),x2) -> F(g(h(a)),a) F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) Problem 1: SCC Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(f(h(a),g(a)),x2) -> F(f(g(h(a)),a),x2) F(f(h(a),g(a)),x2) -> F(g(h(a)),a) F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(f(h(a),g(a)),x2) -> F(f(g(h(a)),a),x2) F(f(h(a),g(a)),x2) -> F(g(h(a)),a) F(h(a),g(a)) -> F(g(h(a)),a) -> FAxioms: f(f(x2,x3),x4) -> f(x2,f(x3,x4)) f(x2,x3) -> f(x3,x2) F(f(x2,x3),x4) -> F(x2,f(x3,x4)) F(x2,x3) -> F(x3,x2) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) ->->-> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) Problem 1: Reduction Pairs Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(f(h(a),g(a)),x2) -> F(f(g(h(a)),a),x2) F(f(h(a),g(a)),x2) -> F(g(h(a)),a) F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Usable Equations: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> Usable Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 [a] = 2 [b] = 0 [g](X) = 2.X + 1 [h](X) = 1 [i](X1,X2) = 0 [F](X1,X2) = 2.X1 + 2.X2 Problem 1: SCC Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(f(h(a),g(a)),x2) -> F(g(h(a)),a) F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(f(h(a),g(a)),x2) -> F(g(h(a)),a) F(h(a),g(a)) -> F(g(h(a)),a) -> FAxioms: f(f(x2,x3),x4) -> f(x2,f(x3,x4)) f(x2,x3) -> f(x3,x2) F(f(x2,x3),x4) -> F(x2,f(x3,x4)) F(x2,x3) -> F(x3,x2) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) ->->-> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) Problem 1: Reduction Pairs Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(f(h(a),g(a)),x2) -> F(g(h(a)),a) F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Usable Equations: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> Usable Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 + 2 [a] = 1 [b] = 0 [g](X) = X [h](X) = X + 1 [i](X1,X2) = 0 [F](X1,X2) = 2.X1 + 2.X2 Problem 1: SCC Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(h(a),g(a)) -> F(g(h(a)),a) -> FAxioms: f(f(x2,x3),x4) -> f(x2,f(x3,x4)) f(x2,x3) -> f(x3,x2) F(f(x2,x3),x4) -> F(x2,f(x3,x4)) F(x2,x3) -> F(x3,x2) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) ->->-> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) Problem 1: Reduction Pairs Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Usable Equations: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> Usable Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(f(x2,x3),x4) -> F(x2,x3) F(x2,f(x3,x4)) -> F(x3,x4) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 + 1 [a] = 1 [b] = 0 [g](X) = X + 2 [h](X) = X + 1 [i](X1,X2) = 0 [F](X1,X2) = X1 + X2 Problem 1: SCC Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(x2,f(x3,x4)) -> F(x3,x4) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(h(a),g(a)) -> F(g(h(a)),a) -> FAxioms: f(f(x2,x3),x4) -> f(x2,f(x3,x4)) f(x2,x3) -> f(x3,x2) F(f(x2,x3),x4) -> F(x2,f(x3,x4)) F(x2,x3) -> F(x3,x2) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) ->->-> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(x2,f(x3,x4)) -> F(x3,x4) Problem 1: Reduction Pairs Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: F(h(a),g(a)) -> F(g(h(a)),a) -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Usable Equations: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> Usable Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(x2,f(x3,x4)) -> F(x3,x4) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2) = X1 + X2 [a] = 2 [b] = 0 [g](X) = 2.X [h](X) = 1 [i](X1,X2) = 0 [F](X1,X2) = 2.X1 + 2.X2 Problem 1: SCC Processor: -> FAxioms: F(f(x2,x3),x4) = F(x2,f(x3,x4)) F(x2,x3) = F(x3,x2) -> Pairs: Empty -> EAxioms: f(f(x2,x3),x4) = f(x2,f(x3,x4)) f(x2,x3) = f(x3,x2) -> Rules: f(h(a),g(a)) -> f(g(h(a)),a) -> SRules: F(x2,f(x3,x4)) -> F(x3,x4) ->Strongly Connected Components: There is no strongly connected component The problem is finite.