YES Problem 1: (VAR x y z) (THEORY (AC and or xor)) (RULES and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F ) Problem 1: Dependency Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(xor(x,y),z),x3) -> AND(x,z) AND(and(xor(x,y),z),x3) -> AND(y,z) AND(and(xor(x,y),z),x3) -> XOR(and(x,z),and(y,z)) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) AND(xor(x,y),z) -> XOR(and(x,z),and(y,z)) EQUIV(x,y) -> XOR(xor(T,y),x) EQUIV(x,y) -> XOR(T,y) IMPL(x,y) -> AND(x,y) IMPL(x,y) -> XOR(and(x,y),xor(T,x)) IMPL(x,y) -> XOR(T,x) NEG(x) -> XOR(T,x) OR(or(x,y),x3) -> AND(x,y) OR(or(x,y),x3) -> OR(xor(and(x,y),xor(x,y)),x3) OR(or(x,y),x3) -> XOR(and(x,y),xor(x,y)) OR(or(x,y),x3) -> XOR(x,y) OR(x,y) -> AND(x,y) OR(x,y) -> XOR(and(x,y),xor(x,y)) OR(x,y) -> XOR(x,y) XOR(xor(neg(x),x),x3) -> XOR(F,x3) XOR(xor(F,x),x3) -> XOR(x,x3) XOR(xor(x,x),x3) -> XOR(F,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) Problem 1: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(xor(x,y),z),x3) -> AND(x,z) AND(and(xor(x,y),z),x3) -> AND(y,z) AND(and(xor(x,y),z),x3) -> XOR(and(x,z),and(y,z)) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) AND(xor(x,y),z) -> XOR(and(x,z),and(y,z)) EQUIV(x,y) -> XOR(xor(T,y),x) EQUIV(x,y) -> XOR(T,y) IMPL(x,y) -> AND(x,y) IMPL(x,y) -> XOR(and(x,y),xor(T,x)) IMPL(x,y) -> XOR(T,x) NEG(x) -> XOR(T,x) OR(or(x,y),x3) -> AND(x,y) OR(or(x,y),x3) -> OR(xor(and(x,y),xor(x,y)),x3) OR(or(x,y),x3) -> XOR(and(x,y),xor(x,y)) OR(or(x,y),x3) -> XOR(x,y) OR(x,y) -> AND(x,y) OR(x,y) -> XOR(and(x,y),xor(x,y)) OR(x,y) -> XOR(x,y) XOR(xor(neg(x),x),x3) -> XOR(F,x3) XOR(xor(F,x),x3) -> XOR(x,x3) XOR(xor(x,x),x3) -> XOR(F,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: XOR(xor(neg(x),x),x3) -> XOR(F,x3) XOR(xor(F,x),x3) -> XOR(x,x3) XOR(xor(x,x),x3) -> XOR(F,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) XOR(xor(x3,x4),x5) -> XOR(x3,xor(x4,x5)) XOR(x3,x4) -> XOR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->->Cycle: ->->-> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(xor(x,y),z),x3) -> AND(x,z) AND(and(xor(x,y),z),x3) -> AND(y,z) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->->Cycle: ->->-> Pairs: OR(or(x,y),x3) -> OR(xor(and(x,y),xor(x,y)),x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) The problem is decomposed in 3 subproblems. Problem 1.1: Reduction Pairs Processor: -> FAxioms: XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: XOR(xor(neg(x),x),x3) -> XOR(F,x3) XOR(xor(F,x),x3) -> XOR(x,x3) XOR(xor(x,x),x3) -> XOR(F,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = 0 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 2 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 2 [F] = 2 [T] = 0 [AND](X1,X2) = 0 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 2.X1 + 2.X2 Problem 1.1: SCC Processor: -> FAxioms: XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: XOR(xor(F,x),x3) -> XOR(x,x3) XOR(xor(x,x),x3) -> XOR(F,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: XOR(xor(F,x),x3) -> XOR(x,x3) XOR(xor(x,x),x3) -> XOR(F,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) XOR(xor(x3,x4),x5) -> XOR(x3,xor(x4,x5)) XOR(x3,x4) -> XOR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) Problem 1.1: Reduction Pairs Processor: -> FAxioms: XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: XOR(xor(F,x),x3) -> XOR(x,x3) XOR(xor(x,x),x3) -> XOR(F,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = 0 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 2 [F] = 2 [T] = 0 [AND](X1,X2) = 0 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 2.X1 + 2.X2 Problem 1.1: SCC Processor: -> FAxioms: XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: XOR(xor(x,x),x3) -> XOR(F,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: XOR(xor(x,x),x3) -> XOR(F,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) XOR(xor(x3,x4),x5) -> XOR(x3,xor(x4,x5)) XOR(x3,x4) -> XOR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) Problem 1.1: Reduction Pairs Processor: -> FAxioms: XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: XOR(xor(x,x),x3) -> XOR(F,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = 0 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 2 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 1 [F] = 0 [T] = 0 [AND](X1,X2) = 0 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 2.X1 + 2.X2 Problem 1.1: SCC Processor: -> FAxioms: XOR(xor(x3,x4),x5) = XOR(x3,xor(x4,x5)) XOR(x3,x4) = XOR(x4,x3) -> Pairs: Empty -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: XOR(xor(x3,x4),x5) -> XOR(x3,x4) XOR(x3,xor(x4,x5)) -> XOR(x4,x5) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(xor(x,y),z),x3) -> AND(x,z) AND(and(xor(x,y),z),x3) -> AND(y,z) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1.X2 + X1 + X2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 1 [F] = 1 [T] = 1 [AND](X1,X2) = X1.X2 + X1 + X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(xor(x,y),z),x3) -> AND(y,z) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(xor(x,y),z),x3) -> AND(y,z) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(xor(x,y),z),x3) -> AND(y,z) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1.X2 + X1 + X2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 1 [F] = 1 [T] = 1 [AND](X1,X2) = X1.X2 + X1 + X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(T,x),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1.X2 + X1 + X2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 1 [F] = 1 [T] = 1 [AND](X1,X2) = X1.X2 + X1 + X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(x,z) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1.X2 + X1 + X2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 1 [F] = 1 [T] = 1 [AND](X1,X2) = X1.X2 + X1 + X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(y,z) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) AND(xor(x,y),z) -> AND(y,z) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1.X2 + X1 + X2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 1 [F] = 1 [T] = 1 [AND](X1,X2) = X1.X2 + X1 + X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(xor(x,y),z),x3) -> AND(xor(and(x,z),and(y,z)),x3) AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 3 ->Interpretation: [and](X1,X2) = 3/2.X1.X2 + 3/2.X1 + 3/2.X2 + 1/2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1/3 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 3 [F] = 0 [T] = 1/3 [AND](X1,X2) = 1/2.X1.X2 + 1/2.X1 + 1/2.X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(F,x),x3) -> AND(F,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 3 ->Interpretation: [and](X1,X2) = 3.X1.X2 + 3.X1 + 3.X2 + 2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1/3 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 2 [F] = 1 [T] = 3/2 [AND](X1,X2) = 2/3.X1.X2 + 2/3.X1 + 2/3.X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(x,x),x3) -> AND(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) xor(xor(x3,x4),x5) -> xor(x3,xor(x4,x5)) xor(x3,x4) -> xor(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) ->->-> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 3 ->Interpretation: [and](X1,X2) = 3.X1.X2 + 3.X1 + 3.X2 + 2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1/2 [or](X1,X2) = 0 [xor](X1,X2) = X1 + X2 + 1 [F] = 0 [T] = 3/2 [AND](X1,X2) = 1/2.X1.X2 + 1/2.X1 + 1/2.X2 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 0 [XOR](X1,X2) = 0 Problem 1.2: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: Empty -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(x,y),x3) -> OR(xor(and(x,y),xor(x,y)),x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> Usable Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 3 ->Interpretation: [and](X1,X2) = 3.X1.X2 + X1 + X2 [equiv](X1,X2) = 0 [impl](X1,X2) = 0 [neg](X) = 1/3 [or](X1,X2) = 3.X1.X2 + 3.X1 + 3.X2 + 2 [xor](X1,X2) = X1 + X2 + 1/3 [F] = 0 [T] = 1/3 [AND](X1,X2) = 0 [EQUIV](X1,X2) = 0 [IMPL](X1,X2) = 0 [NEG](X) = 0 [OR](X1,X2) = 3/2.X1.X2 + 3/2.X1 + 3/2.X2 [XOR](X1,X2) = 0 Problem 1.3: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: Empty -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) xor(xor(x3,x4),x5) = xor(x3,xor(x4,x5)) xor(x3,x4) = xor(x4,x3) -> Rules: and(xor(x,y),z) -> xor(and(x,z),and(y,z)) and(F,x) -> F and(T,x) -> x and(x,x) -> x equiv(x,y) -> xor(xor(T,y),x) impl(x,y) -> xor(and(x,y),xor(T,x)) neg(x) -> xor(T,x) or(x,y) -> xor(and(x,y),xor(x,y)) xor(neg(x),x) -> F xor(F,x) -> x xor(x,x) -> F -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: There is no strongly connected component The problem is finite.