YES Problem 1: (VAR X Y Z x y) (THEORY (AC app) (C max')) (RULES 1 -> s(0) 2 -> s(1) 3 -> s(2) 4 -> s(3) 5 -> s(4) 6 -> s(5) 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ) Problem 1: Reduction Order Processor: -> Rules: 1 -> s(0) 2 -> s(1) 3 -> s(2) 4 -> s(3) 5 -> s(4) 6 -> s(5) 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 2 [2] = 2 [3] = 2 [4] = 2 [5] = 2 [6] = 2 [7] = 2 [8] = 2 [9] = 2 [app](X1,X2) = X1 + X2 [max](X) = 2.X + 1 [max'](X1,X2) = X1 + X2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 1 [empty] = 0 [s](X) = X [singl](X) = X + 2 Problem 1: Reduction Order Processor: -> Rules: 2 -> s(1) 3 -> s(2) 4 -> s(3) 5 -> s(4) 6 -> s(5) 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 1 [3] = 1 [4] = 1 [5] = 1 [6] = 1 [7] = 1 [8] = 2 [9] = 2 [app](X1,X2) = X1 + X2 + 2 [max](X) = 2.X + 2 [max'](X1,X2) = X1 + X2 + 1 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = X [singl](X) = 2.X Problem 1: Reduction Order Processor: -> Rules: 3 -> s(2) 4 -> s(3) 5 -> s(4) 6 -> s(5) 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 1 [3] = 2 [4] = 2 [5] = 2 [6] = 2 [7] = 2 [8] = 2 [9] = 2 [app](X1,X2) = X1 + X2 [max](X) = 2.X + 2 [max'](X1,X2) = X1 + X2 + 1 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = X [singl](X) = 2.X + 1 Problem 1: Reduction Order Processor: -> Rules: 4 -> s(3) 5 -> s(4) 6 -> s(5) 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 1 [4] = 2 [5] = 2 [6] = 2 [7] = 2 [8] = 2 [9] = 2 [app](X1,X2) = X1 + X2 + 2 [max](X) = X + 2 [max'](X1,X2) = X1 + X2 [max2](X1,X2) = X1 + X2 + 2 [0] = 0 [empty] = 0 [s](X) = X [singl](X) = X Problem 1: Reduction Order Processor: -> Rules: 5 -> s(4) 6 -> s(5) 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 1 [6] = 1 [7] = 1 [8] = 1 [9] = 1 [app](X1,X2) = X1 + X2 + 1 [max](X) = 2.X + 2 [max'](X1,X2) = X1 + X2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = X [singl](X) = 2.X + 2 Problem 1: Reduction Order Processor: -> Rules: 6 -> s(5) 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 1 [7] = 2 [8] = 2 [9] = 2 [app](X1,X2) = X1 + X2 + 2 [max](X) = X + 2 [max'](X1,X2) = X1 + X2 [max2](X1,X2) = X1 + X2 + 2 [0] = 0 [empty] = 0 [s](X) = X [singl](X) = X Problem 1: Reduction Order Processor: -> Rules: 7 -> s(6) 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 1 [7] = 2 [8] = 2 [9] = 2 [app](X1,X2) = X1 + X2 + 1 [max](X) = 2.X + 2 [max'](X1,X2) = X1 + X2 + 1 [max2](X1,X2) = 2.X1 + 2.X2 [0] = 0 [empty] = 0 [s](X) = X [singl](X) = X + 1 Problem 1: Reduction Order Processor: -> Rules: 8 -> s(7) 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 1 [9] = 2 [app](X1,X2) = X1 + X2 + 2 [max](X) = X + 2 [max'](X1,X2) = X1 + X2 [max2](X1,X2) = X1 + X2 + 2 [0] = 0 [empty] = 0 [s](X) = 2.X [singl](X) = X Problem 1: Reduction Order Processor: -> Rules: 9 -> s(8) app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 2 [app](X1,X2) = X1 + X2 + 2 [max](X) = X + 2 [max'](X1,X2) = X1 + X2 [max2](X1,X2) = X1 + X2 + 2 [0] = 0 [empty] = 0 [s](X) = 2.X [singl](X) = X Problem 1: Reduction Order Processor: -> Rules: app(empty,X) -> X max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 + 2 [max](X) = 2.X + 2 [max'](X1,X2) = X1 + X2 + 2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 2 [s](X) = 2.X + 2 [singl](X) = 2.X Problem 1: Reduction Order Processor: -> Rules: max(app(singl(x),Y)) -> max2(x,Y) max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 + 1 [max](X) = 2.X + 2 [max'](X1,X2) = X1 + X2 [max2](X1,X2) = 2.X1 + 2.X2 + 1 [0] = 0 [empty] = 0 [s](X) = 2.X + 2 [singl](X) = 2.X Problem 1: Reduction Order Processor: -> Rules: max(singl(x)) -> x max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 + 2 [max](X) = X + 2 [max'](X1,X2) = X1 + X2 + 2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = 2.X + 2 [singl](X) = 2.X Problem 1: Reduction Order Processor: -> Rules: max'(0,x) -> x max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 + 2 [max](X) = 2.X [max'](X1,X2) = X1 + X2 + 2 [max2](X1,X2) = X1 + 2.X2 + 2 [0] = 1 [empty] = 0 [s](X) = 2.X + 2 [singl](X) = 2.X Problem 1: Reduction Order Processor: -> Rules: max'(s(x),s(y)) -> s(max'(x,y)) max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 [max](X) = 2.X [max'](X1,X2) = X1 + X2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = 2.X + 2 [singl](X) = 2.X + 2 Problem 1: Reduction Order Processor: -> Rules: max2(x,app(singl(y),Z)) -> max2(max'(x,y),Z) max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 + 2 [max](X) = 2.X [max'](X1,X2) = X1 + X2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = 2.X [singl](X) = 2.X Problem 1: Reduction Order Processor: -> Rules: max2(x,empty) -> x max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 + 2 [max](X) = 2.X [max'](X1,X2) = 2.X1 + 2.X2 + 2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = 2.X [singl](X) = X Problem 1: Reduction Order Processor: -> Rules: max2(x,singl(y)) -> max'(x,y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [1] = 0 [2] = 0 [3] = 0 [4] = 0 [5] = 0 [6] = 0 [7] = 0 [8] = 0 [9] = 0 [app](X1,X2) = X1 + X2 + 1 [max](X) = 2.X [max'](X1,X2) = 2.X1 + 2.X2 + 2 [max2](X1,X2) = 2.X1 + 2.X2 + 2 [0] = 0 [empty] = 0 [s](X) = 2.X [singl](X) = 2.X + 2 Problem 1: Dependency Pairs Processor: -> FAxioms: APP(app(x5,x6),x7) = APP(x5,app(x6,x7)) APP(x5,x6) = APP(x6,x5) MAX'(x5,x6) = MAX'(x6,x5) -> Pairs: Empty -> EAxioms: app(app(x5,x6),x7) = app(x5,app(x6,x7)) app(x5,x6) = app(x6,x5) max'(x5,x6) = max'(x6,x5) -> Rules: Empty -> SRules: APP(app(x5,x6),x7) -> APP(x5,x6) APP(x5,app(x6,x7)) -> APP(x6,x7) Problem 1: SCC Processor: -> FAxioms: APP(app(x5,x6),x7) = APP(x5,app(x6,x7)) APP(x5,x6) = APP(x6,x5) MAX'(x5,x6) = MAX'(x6,x5) -> Pairs: Empty -> EAxioms: app(app(x5,x6),x7) = app(x5,app(x6,x7)) app(x5,x6) = app(x6,x5) max'(x5,x6) = max'(x6,x5) -> Rules: Empty -> SRules: APP(app(x5,x6),x7) -> APP(x5,x6) APP(x5,app(x6,x7)) -> APP(x6,x7) ->Strongly Connected Components: There is no strongly connected component The problem is finite.