YES Problem 1: (VAR x y z) (THEORY (AC and or) (C eq neq)) (RULES and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x ) Problem 1: Dependency Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) EQ(x3,x4) = EQ(x4,x3) NEQ(x3,x4) = NEQ(x4,x3) OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: AND(and(x,or(x,y)),x3) -> AND(x,x3) AND(and(x,false),x3) -> AND(false,x3) AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) NOT(and(x,y)) -> NOT(x) NOT(and(x,y)) -> NOT(y) NOT(and(x,y)) -> OR(not(x),not(y)) NOT(eq(x,y)) -> NEQ(x,y) NOT(neq(x,y)) -> EQ(x,y) NOT(or(x,y)) -> AND(not(x),not(y)) NOT(or(x,y)) -> NOT(x) NOT(or(x,y)) -> NOT(y) OR(and(x,y),z) -> AND(or(x,z),or(y,z)) OR(and(x,y),z) -> OR(x,z) OR(and(x,y),z) -> OR(y,z) OR(or(and(x,y),z),x3) -> AND(or(x,z),or(y,z)) OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) EQ(x3,x4) = EQ(x4,x3) NEQ(x3,x4) = NEQ(x4,x3) OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: AND(and(x,or(x,y)),x3) -> AND(x,x3) AND(and(x,false),x3) -> AND(false,x3) AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) NOT(and(x,y)) -> NOT(x) NOT(and(x,y)) -> NOT(y) NOT(and(x,y)) -> OR(not(x),not(y)) NOT(eq(x,y)) -> NEQ(x,y) NOT(neq(x,y)) -> EQ(x,y) NOT(or(x,y)) -> AND(not(x),not(y)) NOT(or(x,y)) -> NOT(x) NOT(or(x,y)) -> NOT(y) OR(and(x,y),z) -> AND(or(x,z),or(y,z)) OR(and(x,y),z) -> OR(x,z) OR(and(x,y),z) -> OR(y,z) OR(or(and(x,y),z),x3) -> AND(or(x,z),or(y,z)) OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(x,or(x,y)),x3) -> AND(x,x3) AND(and(x,false),x3) -> AND(false,x3) AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->->Cycle: ->->-> Pairs: OR(and(x,y),z) -> OR(x,z) OR(and(x,y),z) -> OR(y,z) OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->->Cycle: ->->-> Pairs: NOT(and(x,y)) -> NOT(x) NOT(and(x,y)) -> NOT(y) NOT(or(x,y)) -> NOT(x) NOT(or(x,y)) -> NOT(y) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: Empty The problem is decomposed in 3 subproblems. Problem 1.1: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,or(x,y)),x3) -> AND(x,x3) AND(and(x,false),x3) -> AND(false,x3) AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = X1 + X2 + 1 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = 2.X1 + 2 [false] = 2 [true] = 0 [AND](X1,X2) = 2.X1 + 2.X2 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = 0 Problem 1.1: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,false),x3) -> AND(false,x3) AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(x,false),x3) -> AND(false,x3) AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.1: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,false),x3) -> AND(false,x3) AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = X1 + X2 + 2 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = 2.X1 [false] = 2 [true] = 0 [AND](X1,X2) = 2.X1 + 2.X2 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = 0 Problem 1.1: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.1: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,true),x3) -> AND(x,x3) AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = X1 + X2 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = 2.X1 [false] = 2 [true] = 2 [AND](X1,X2) = 2.X1 + 2.X2 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = 0 Problem 1.1: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: AND(and(x,x),x3) -> AND(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) AND(and(x3,x4),x5) -> AND(x3,and(x4,x5)) AND(x3,x4) -> AND(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) Problem 1.1: Reduction Pairs Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: AND(and(x,x),x3) -> AND(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = X1 + X2 + 2 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = 2.X1 [false] = 2 [true] = 0 [AND](X1,X2) = 2.X1 + 2.X2 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = 0 Problem 1.1: SCC Processor: -> FAxioms: AND(and(x3,x4),x5) = AND(x3,and(x4,x5)) AND(x3,x4) = AND(x4,x3) -> Pairs: Empty -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: AND(and(x3,x4),x5) -> AND(x3,x4) AND(x3,and(x4,x5)) -> AND(x4,x5) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(and(x,y),z) -> OR(x,z) OR(and(x,y),z) -> OR(y,z) OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1 + X2 + 1 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = X1.X2 + X1 + X2 [false] = 1 [true] = 1 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = X1.X2 + X1 + X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(and(x,y),z) -> OR(y,z) OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: OR(and(x,y),z) -> OR(y,z) OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(and(x,y),z) -> OR(y,z) OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1 + X2 + 1 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = X1.X2 + X1 + X2 [false] = 1 [true] = 1 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = X1.X2 + X1 + X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(x,z) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1 + X2 + 1 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = X1.X2 + X1 + X2 [false] = 1 [true] = 1 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = X1.X2 + X1 + X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(and(x,y),z),x3) -> OR(y,z) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1 + X2 + 1 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = X1.X2 + X1 + X2 [false] = 1 [true] = 1 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = X1.X2 + X1 + X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(x,false),x3) -> OR(x,x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 1 ->Interpretation: [and](X1,X2) = X1 + X2 + 1 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = X1.X2 + X1 + X2 [false] = 1 [true] = 1 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = X1.X2 + X1 + X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(and(x,y),z),x3) -> OR(and(or(x,z),or(y,z)),x3) OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 3 ->Interpretation: [and](X1,X2) = X1 + X2 + 3 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = 2.X1.X2 + 3.X1 + 3.X2 + 3 [false] = 2 [true] = 0 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = 2.X1.X2 + 3.X1 + 3.X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(x,true),x3) -> OR(true,x3) OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 3 ->Interpretation: [and](X1,X2) = X1 + X2 + 3 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = 2.X1.X2 + 3.X1 + 3.X2 + 3 [false] = 1/3 [true] = 0 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = 1/3.X1.X2 + 1/2.X1 + 1/2.X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: OR(or(x,x),x3) -> OR(x,x3) -> FAxioms: and(and(x3,x4),x5) -> and(x3,and(x4,x5)) and(x3,x4) -> and(x4,x3) eq(x3,x4) -> eq(x4,x3) neq(x3,x4) -> neq(x4,x3) or(or(x3,x4),x5) -> or(x3,or(x4,x5)) or(x3,x4) -> or(x4,x3) OR(or(x3,x4),x5) -> OR(x3,or(x4,x5)) OR(x3,x4) -> OR(x4,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) ->->-> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) Problem 1.2: Reduction Pairs Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: OR(or(x,x),x3) -> OR(x,x3) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Usable Equations: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> Usable Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 3 ->Interpretation: [and](X1,X2) = X1 + X2 + 2 [eq](X1,X2) = 0 [neq](X1,X2) = 0 [not](X) = 0 [or](X1,X2) = 3/2.X1.X2 + 3/2.X1 + 3/2.X2 + 1/2 [false] = 3/2 [true] = 3/2 [AND](X1,X2) = 0 [EQ](X1,X2) = 0 [NEQ](X1,X2) = 0 [NOT](X) = 0 [OR](X1,X2) = X1.X2 + X1 + X2 Problem 1.2: SCC Processor: -> FAxioms: OR(or(x3,x4),x5) = OR(x3,or(x4,x5)) OR(x3,x4) = OR(x4,x3) -> Pairs: Empty -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: OR(or(x3,x4),x5) -> OR(x3,x4) OR(x3,or(x4,x5)) -> OR(x4,x5) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> FAxioms: Empty -> Pairs: NOT(and(x,y)) -> NOT(x) NOT(and(x,y)) -> NOT(y) NOT(or(x,y)) -> NOT(x) NOT(or(x,y)) -> NOT(y) -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: Empty ->Projection: pi(NOT) = [1] Problem 1.3: SCC Processor: -> FAxioms: Empty -> Pairs: Empty -> EAxioms: and(and(x3,x4),x5) = and(x3,and(x4,x5)) and(x3,x4) = and(x4,x3) eq(x3,x4) = eq(x4,x3) neq(x3,x4) = neq(x4,x3) or(or(x3,x4),x5) = or(x3,or(x4,x5)) or(x3,x4) = or(x4,x3) -> Rules: and(x,or(x,y)) -> x and(x,false) -> false and(x,true) -> x and(x,x) -> x eq(x,x) -> true neq(x,x) -> false not(and(x,y)) -> or(not(x),not(y)) not(eq(x,y)) -> neq(x,y) not(neq(x,y)) -> eq(x,y) not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(false) -> true not(true) -> false or(and(x,y),z) -> and(or(x,z),or(y,z)) or(x,false) -> x or(x,true) -> true or(x,x) -> x -> SRules: Empty ->Strongly Connected Components: There is no strongly connected component The problem is finite.