YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination of the given ETRS could be proven: (0) ETRS (1) EquationalDependencyPairsProof [EQUIVALENT, 0 ms] (2) EDP (3) EDependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) EDP (6) EUsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (7) EDP (8) PisEmptyProof [EQUIVALENT, 0 ms] (9) YES (10) EDP (11) ESharpUsableEquationsProof [EQUIVALENT, 0 ms] (12) EDP (13) EDPPoloProof [EQUIVALENT, 0 ms] (14) EDP (15) PisEmptyProof [EQUIVALENT, 0 ms] (16) YES (17) EDP (18) ESharpUsableEquationsProof [EQUIVALENT, 0 ms] (19) EDP (20) EDPPoloProof [EQUIVALENT, 0 ms] (21) EDP (22) PisEmptyProof [EQUIVALENT, 0 ms] (23) YES ---------------------------------------- (0) Obligation: Equational rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) ---------------------------------------- (1) EquationalDependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,DA_STEIN] we result in the following initial EDP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) RM(n, add(m, x)) -> EQ(n, m) IF_RM(true, n, add(m, x)) -> RM(n, x) IF_RM(false, n, add(m, x)) -> RM(n, x) PURGE(add(n, x)) -> PURGE(rm(n, x)) PURGE(add(n, x)) -> RM(n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) The set E# consists of the following equations: EQ(x, y) == EQ(y, x) We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (2) Obligation: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) RM(n, add(m, x)) -> EQ(n, m) IF_RM(true, n, add(m, x)) -> RM(n, x) IF_RM(false, n, add(m, x)) -> RM(n, x) PURGE(add(n, x)) -> PURGE(rm(n, x)) PURGE(add(n, x)) -> RM(n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) The set E# consists of the following equations: EQ(x, y) == EQ(y, x) We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (3) EDependencyGraphProof (EQUIVALENT) The approximation of the Equational Dependency Graph [DA_STEIN] contains 3 SCCs with 2 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) The set E# consists of the following equations: EQ(x, y) == EQ(y, x) We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (6) EUsableRulesReductionPairsProof (EQUIVALENT) By using the improved usable rules and equations with reduction pair processor [DA_STEIN] with a polynomial ordering [POLO], all dependency pairs and the corresponding improved usable rules can be oriented non-strictly, the improved usable equations and the esharp equations can be oriented equivalently. All non-usable rules and equations are removed, and those dependency pairs and improved usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: EQ(s(x), s(y)) -> EQ(x, y) The following rules are removed from R: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The following equations are removed from E: eq(x, y) == eq(y, x) Used ordering: POLO with Polynomial interpretation [POLO]: POL(EQ(x_1, x_2)) = 3*x_1 + 3*x_2 POL(s(x_1)) = 3*x_1 ---------------------------------------- (7) Obligation: P is empty. R is empty. E is empty. The set E# consists of the following equations: EQ(x, y) == EQ(y, x) We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (8) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,E#,R,E) chain. ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: The TRS P consists of the following rules: IF_RM(true, n, add(m, x)) -> RM(n, x) RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) IF_RM(false, n, add(m, x)) -> RM(n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) The set E# consists of the following equations: EQ(x, y) == EQ(y, x) We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (11) ESharpUsableEquationsProof (EQUIVALENT) We can delete the following equations of E# with the esharp usable equations processor[DA_STEIN]: EQ(x, y) == EQ(y, x) ---------------------------------------- (12) Obligation: The TRS P consists of the following rules: IF_RM(true, n, add(m, x)) -> RM(n, x) RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) IF_RM(false, n, add(m, x)) -> RM(n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) E# is empty. We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (13) EDPPoloProof (EQUIVALENT) We use the reduction pair processor [DA_STEIN] with a polynomial ordering [POLO]. All Dependency Pairs of this DP problem can be strictly oriented. IF_RM(true, n, add(m, x)) -> RM(n, x) RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) IF_RM(false, n, add(m, x)) -> RM(n, x) With the implicit AFS there is no usable rule of R. There is no equation of E#. With the implicit AFS there is no usable equation of E. Used ordering: POLO with Polynomial interpretation [POLO]: POL(0) = 0 POL(IF_RM(x_1, x_2, x_3)) = 3*x_2 + 2*x_3 POL(RM(x_1, x_2)) = 3 + 3*x_1 + 2*x_2 POL(add(x_1, x_2)) = 2 + x_2 POL(eq(x_1, x_2)) = 0 POL(false) = 0 POL(s(x_1)) = 0 POL(true) = 0 ---------------------------------------- (14) Obligation: P is empty. The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) E# is empty. We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (15) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,E#,R,E) chain. ---------------------------------------- (16) YES ---------------------------------------- (17) Obligation: The TRS P consists of the following rules: PURGE(add(n, x)) -> PURGE(rm(n, x)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) The set E# consists of the following equations: EQ(x, y) == EQ(y, x) We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (18) ESharpUsableEquationsProof (EQUIVALENT) We can delete the following equations of E# with the esharp usable equations processor[DA_STEIN]: EQ(x, y) == EQ(y, x) ---------------------------------------- (19) Obligation: The TRS P consists of the following rules: PURGE(add(n, x)) -> PURGE(rm(n, x)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) E# is empty. We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (20) EDPPoloProof (EQUIVALENT) We use the reduction pair processor [DA_STEIN] with a polynomial ordering [POLO]. All Dependency Pairs of this DP problem can be strictly oriented. PURGE(add(n, x)) -> PURGE(rm(n, x)) With the implicit AFS we had to orient the following set of usable rules of R non-strictly. if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) There is no equation of E#. With the implicit AFS there is no usable equation of E. Used ordering: POLO with Polynomial interpretation [POLO]: POL(0) = 0 POL(PURGE(x_1)) = x_1 POL(add(x_1, x_2)) = 1 + 2*x_2 POL(eq(x_1, x_2)) = 0 POL(false) = 0 POL(if_rm(x_1, x_2, x_3)) = x_3 POL(nil) = 0 POL(rm(x_1, x_2)) = x_2 POL(s(x_1)) = 0 POL(true) = 0 ---------------------------------------- (21) Obligation: P is empty. The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) purge(nil) -> nil purge(add(n, x)) -> add(n, purge(rm(n, x))) The set E consists of the following equations: eq(x, y) == eq(y, x) E# is empty. We have to consider all minimal (P,E#,R,E)-chains ---------------------------------------- (22) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,E#,R,E) chain. ---------------------------------------- (23) YES