YES Problem 1: (VAR x y) (THEORY (C gcd)) (RULES gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) ) Problem 1: Dependency Pairs Processor: -> FAxioms: GCD(x2,x3) = GCD(x3,x2) -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) GCD(s(x),s(y)) -> LE(y,x) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(false,s(x),s(y)) -> MINUS(y,x) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> MINUS(x,y) IF_MINUS(false,s(x),y) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) MINUS(s(x),y) -> LE(s(x),y) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty Problem 1: SCC Processor: -> FAxioms: GCD(x2,x3) = GCD(x3,x2) -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) GCD(s(x),s(y)) -> LE(y,x) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(false,s(x),s(y)) -> MINUS(y,x) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) IF_GCD(true,s(x),s(y)) -> MINUS(x,y) IF_MINUS(false,s(x),y) -> MINUS(x,y) LE(s(x),s(y)) -> LE(x,y) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) MINUS(s(x),y) -> LE(s(x),y) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LE(s(x),s(y)) -> LE(x,y) -> FAxioms: gcd(x2,x3) -> gcd(x3,x2) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->->Cycle: ->->-> Pairs: IF_MINUS(false,s(x),y) -> MINUS(x,y) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) -> FAxioms: gcd(x2,x3) -> gcd(x3,x2) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->->Cycle: ->->-> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> FAxioms: gcd(x2,x3) -> gcd(x3,x2) GCD(x2,x3) -> GCD(x3,x2) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) ->->-> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> FAxioms: Empty -> Pairs: LE(s(x),s(y)) -> LE(x,y) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->Projection: pi(LE) = [1] Problem 1.1: SCC Processor: -> FAxioms: Empty -> Pairs: Empty -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> FAxioms: Empty -> Pairs: IF_MINUS(false,s(x),y) -> MINUS(x,y) MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->Projection: pi(IF_MINUS) = [2] pi(MINUS) = [1] Problem 1.2: SCC Processor: -> FAxioms: Empty -> Pairs: MINUS(s(x),y) -> IF_MINUS(le(s(x),y),s(x),y) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> FAxioms: GCD(x2,x3) = GCD(x3,x2) -> Pairs: GCD(s(x),s(y)) -> IF_GCD(le(y,x),s(x),s(y)) IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Usable Equations: Empty -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> Usable Rules: if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [gcd](X1,X2) = 0 [if_gcd](X1,X2,X3) = 0 [if_minus](X1,X2,X3) = 2.X2 [le](X1,X2) = 2 [minus](X1,X2) = 2.X1 [0] = 0 [false] = 2 [s](X) = 2.X + 1 [true] = 2 [GCD](X1,X2) = X1 + X2 + 2 [IF_GCD](X1,X2,X3) = X2 + X3 + 1 [IF_MINUS](X1,X2,X3) = 0 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 Problem 1.3: SCC Processor: -> FAxioms: GCD(x2,x3) = GCD(x3,x2) -> Pairs: IF_GCD(false,s(x),s(y)) -> GCD(minus(y,x),s(x)) IF_GCD(true,s(x),s(y)) -> GCD(minus(x,y),s(y)) -> EAxioms: gcd(x2,x3) = gcd(x3,x2) -> Rules: gcd(0,y) -> y gcd(s(x),0) -> s(x) gcd(s(x),s(y)) -> if_gcd(le(y,x),s(x),s(y)) if_gcd(false,s(x),s(y)) -> gcd(minus(y,x),s(x)) if_gcd(true,s(x),s(y)) -> gcd(minus(x,y),s(y)) if_minus(false,s(x),y) -> s(minus(x,y)) if_minus(true,s(x),y) -> 0 le(0,y) -> true le(s(x),0) -> false le(s(x),s(y)) -> le(x,y) minus(0,y) -> 0 minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) -> SRules: Empty ->Strongly Connected Components: There is no strongly connected component The problem is finite.