YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 67 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) ATransformationProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) ATransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) MRRProof [EQUIVALENT, 0 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) TRUE (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: app(half, 0) -> 0 app(half, app(s, 0)) -> 0 app(half, app(s, app(s, x))) -> app(s, app(half, x)) app(bits, 0) -> 0 app(bits, app(s, x)) -> app(s, app(bits, app(half, app(s, x)))) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: APP(half, app(s, app(s, x))) -> APP(s, app(half, x)) APP(half, app(s, app(s, x))) -> APP(half, x) APP(bits, app(s, x)) -> APP(s, app(bits, app(half, app(s, x)))) APP(bits, app(s, x)) -> APP(bits, app(half, app(s, x))) APP(bits, app(s, x)) -> APP(half, app(s, x)) APP(app(map, f), app(app(cons, x), xs)) -> APP(app(cons, app(f, x)), app(app(map, f), xs)) APP(app(map, f), app(app(cons, x), xs)) -> APP(cons, app(f, x)) APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(app(filter2, app(f, x)), f), x), xs) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(filter2, app(f, x)), f), x) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(filter2, app(f, x)), f) APP(app(filter, f), app(app(cons, x), xs)) -> APP(filter2, app(f, x)) APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(cons, x), app(app(filter, f), xs)) APP(app(app(app(filter2, true), f), x), xs) -> APP(cons, x) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) APP(app(app(app(filter2, true), f), x), xs) -> APP(filter, f) APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) APP(app(app(app(filter2, false), f), x), xs) -> APP(filter, f) The TRS R consists of the following rules: app(half, 0) -> 0 app(half, app(s, 0)) -> 0 app(half, app(s, app(s, x))) -> app(s, app(half, x)) app(bits, 0) -> 0 app(bits, app(s, x)) -> app(s, app(bits, app(half, app(s, x)))) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 13 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: APP(half, app(s, app(s, x))) -> APP(half, x) The TRS R consists of the following rules: app(half, 0) -> 0 app(half, app(s, 0)) -> 0 app(half, app(s, app(s, x))) -> app(s, app(half, x)) app(bits, 0) -> 0 app(bits, app(s, x)) -> app(s, app(bits, app(half, app(s, x)))) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APP(half, app(s, app(s, x))) -> APP(half, x) R is empty. The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) ATransformationProof (EQUIVALENT) We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: half1(s(s(x))) -> half1(x) R is empty. The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) bits(0) bits(s(x0)) map(x0, nil) map(x0, cons(x1, x2)) filter(x0, nil) filter(x0, cons(x1, x2)) filter2(true, x0, x1, x2) filter2(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. half(0) half(s(0)) half(s(s(x0))) bits(0) bits(s(x0)) map(x0, nil) map(x0, cons(x1, x2)) filter(x0, nil) filter(x0, cons(x1, x2)) filter2(true, x0, x1, x2) filter2(false, x0, x1, x2) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: half1(s(s(x))) -> half1(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *half1(s(s(x))) -> half1(x) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: APP(bits, app(s, x)) -> APP(bits, app(half, app(s, x))) The TRS R consists of the following rules: app(half, 0) -> 0 app(half, app(s, 0)) -> 0 app(half, app(s, app(s, x))) -> app(s, app(half, x)) app(bits, 0) -> 0 app(bits, app(s, x)) -> app(s, app(bits, app(half, app(s, x)))) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: APP(bits, app(s, x)) -> APP(bits, app(half, app(s, x))) The TRS R consists of the following rules: app(half, app(s, 0)) -> 0 app(half, app(s, app(s, x))) -> app(s, app(half, x)) app(half, 0) -> 0 The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) ATransformationProof (EQUIVALENT) We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: bits1(s(x)) -> bits1(half(s(x))) The TRS R consists of the following rules: half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) half(0) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) bits(0) bits(s(x0)) map(x0, nil) map(x0, cons(x1, x2)) filter(x0, nil) filter(x0, cons(x1, x2)) filter2(true, x0, x1, x2) filter2(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. bits(0) bits(s(x0)) map(x0, nil) map(x0, cons(x1, x2)) filter(x0, nil) filter(x0, cons(x1, x2)) filter2(true, x0, x1, x2) filter2(false, x0, x1, x2) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: bits1(s(x)) -> bits1(half(s(x))) The TRS R consists of the following rules: half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) half(0) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(bits1(x_1)) = 2*x_1 POL(half(x_1)) = x_1 POL(s(x_1)) = 2 + x_1 ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: bits1(s(x)) -> bits1(half(s(x))) The TRS R consists of the following rules: half(0) -> 0 The set Q consists of the following terms: half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (24) TRUE ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) The TRS R consists of the following rules: app(half, 0) -> 0 app(half, app(s, 0)) -> 0 app(half, app(s, app(s, x))) -> app(s, app(half, x)) app(bits, 0) -> 0 app(bits, app(s, x)) -> app(s, app(bits, app(half, app(s, x)))) app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) R is empty. The set Q consists of the following terms: app(half, 0) app(half, app(s, 0)) app(half, app(s, app(s, x0))) app(bits, 0) app(bits, app(s, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) The graph contains the following edges 1 > 1, 2 > 2 *APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) The graph contains the following edges 1 > 1, 2 > 2 *APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) The graph contains the following edges 1 >= 1, 2 > 2 *APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) The graph contains the following edges 2 >= 2 *APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) The graph contains the following edges 2 >= 2 ---------------------------------------- (29) YES