YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: IF(ffalse,x:S,y:S) -> MINUS(p(x:S),y:S) IF(ffalse,x:S,y:S) -> P(x:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(x:S,y:S) -> IF(le(x:S,y:S),x:S,y:S) MINUS(x:S,y:S) -> LE(x:S,y:S) -> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S Problem 1: SCC Processor: -> Pairs: IF(ffalse,x:S,y:S) -> MINUS(p(x:S),y:S) IF(ffalse,x:S,y:S) -> P(x:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(x:S,y:S) -> IF(le(x:S,y:S),x:S,y:S) MINUS(x:S,y:S) -> LE(x:S,y:S) -> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) ->->-> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->->Cycle: ->->-> Pairs: IF(ffalse,x:S,y:S) -> MINUS(p(x:S),y:S) MINUS(x:S,y:S) -> IF(le(x:S,y:S),x:S,y:S) ->->-> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Projection: pi(LE) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: IF(ffalse,x:S,y:S) -> MINUS(p(x:S),y:S) MINUS(x:S,y:S) -> IF(le(x:S,y:S),x:S,y:S) -> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S -> Usable rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [if](X1,X2,X3) = 0 [le](X1,X2) = 1/2.X1 + 1/2 [minus](X1,X2) = 0 [p](X) = 1/2.X [0] = 0 [fSNonEmpty] = 0 [false] = 1 [s](X) = 2.X + 2 [true] = 0 [IF](X1,X2,X3) = 2.X1 + X2 + 2.X3 [LE](X1,X2) = 0 [MINUS](X1,X2) = 2.X1 + 2.X2 + 1 [P](X) = 0 Problem 1.2: SCC Processor: -> Pairs: MINUS(x:S,y:S) -> IF(le(x:S,y:S),x:S,y:S) -> Rules: if(ffalse,x:S,y:S) -> s(minus(p(x:S),y:S)) if(ttrue,x:S,y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(x:S,y:S) -> if(le(x:S,y:S),x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.