YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 1 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPOrderProof [EQUIVALENT, 57 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, x1) if(true, x0, x1) if(false, x0, x1) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) MINUS(x, y) -> IF(le(x, y), x, y) MINUS(x, y) -> LE(x, y) IF(false, x, y) -> MINUS(p(x), y) IF(false, x, y) -> P(x) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, x1) if(true, x0, x1) if(false, x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, x1) if(true, x0, x1) if(false, x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, x1) if(true, x0, x1) if(false, x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, x1) if(true, x0, x1) if(false, x0, x1) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, y) -> IF(le(x, y), x, y) IF(false, x, y) -> MINUS(p(x), y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, y) -> if(le(x, y), x, y) if(true, x, y) -> 0 if(false, x, y) -> s(minus(p(x), y)) The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, x1) if(true, x0, x1) if(false, x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, y) -> IF(le(x, y), x, y) IF(false, x, y) -> MINUS(p(x), y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, x1) if(true, x0, x1) if(false, x0, x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, x1) if(true, x0, x1) if(false, x0, x1) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, y) -> IF(le(x, y), x, y) IF(false, x, y) -> MINUS(p(x), y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF(false, x, y) -> MINUS(p(x), y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(IF(x_1, x_2, x_3)) = [4]x_1 + [1/2]x_2 POL(MINUS(x_1, x_2)) = [2]x_1 POL(false) = [1/4] POL(le(x_1, x_2)) = [1/4]x_1 POL(p(x_1)) = [1/4]x_1 POL(s(x_1)) = [4] + [4]x_1 POL(true) = 0 The value of delta used in the strict ordering is 1. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) p(0) -> 0 p(s(x)) -> x ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, y) -> IF(le(x, y), x, y) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: p(0) p(s(x0)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (20) TRUE