YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPOrderProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPOrderProof [EQUIVALENT, 9 ms] (34) QDP (35) PisEmptyProof [EQUIVALENT, 0 ms] (36) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) HALF(s(s(x))) -> HALF(x) PLUS(s(x), y) -> PLUS(x, y) TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) TIMES(s(x), y) -> EVEN(s(x)) IF_TIMES(true, s(x), y) -> PLUS(times(half(s(x)), y), times(half(s(x)), y)) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(true, s(x), y) -> HALF(s(x)) IF_TIMES(false, s(x), y) -> PLUS(y, times(x, y)) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(x))) -> HALF(x) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EVEN(s(s(x))) -> EVEN(x) The graph contains the following edges 1 > 1 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) half(0) -> 0 half(s(s(x))) -> s(half(x)) plus(0, y) -> y plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> if_times(even(s(x)), s(x), y) if_times(true, s(x), y) -> plus(times(half(s(x)), y), times(half(s(x)), y)) if_times(false, s(x), y) -> plus(y, times(x, y)) The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) if_times(true, s(x0), x1) if_times(false, s(x0), x1) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) IF_TIMES(false, s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_TIMES(false, s(x), y) -> TIMES(x, y) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. TIMES(x1, x2) = TIMES(x1, x2) s(x1) = s(x1) IF_TIMES(x1, x2, x3) = IF_TIMES(x2, x3) even(x1) = even true = true half(x1) = x1 false = false 0 = 0 Recursive path order with status [RPO]. Quasi-Precedence: [TIMES_2, IF_TIMES_2, true] > s_1 > false [TIMES_2, IF_TIMES_2, true] > even > false Status: TIMES_2: multiset status s_1: multiset status IF_TIMES_2: multiset status even: multiset status true: multiset status false: multiset status 0: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: half(s(s(x))) -> s(half(x)) half(0) -> 0 ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TIMES(s(x), y) -> IF_TIMES(even(s(x)), s(x), y) IF_TIMES(true, s(x), y) -> TIMES(half(s(x)), y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_TIMES_3(x_1, ..., x_3) ) = max{0, x_1 + 2x_2 + 2x_3 - 1} POL( even_1(x_1) ) = 1 POL( s_1(x_1) ) = 2x_1 + 2 POL( 0 ) = 0 POL( false ) = 1 POL( TIMES_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( half_1(x_1) ) = max{0, x_1 - 2} POL( true ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: even(s(0)) -> false even(s(s(x))) -> even(x) half(s(s(x))) -> s(half(x)) half(0) -> 0 even(0) -> true ---------------------------------------- (34) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: half(s(s(x))) -> s(half(x)) half(0) -> 0 even(s(0)) -> false even(s(s(x))) -> even(x) even(0) -> true The set Q consists of the following terms: even(0) even(s(0)) even(s(s(x0))) half(0) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (36) YES