YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) QUOT(s(x:S),s(y:S)) -> MINUS(s(x:S),s(y:S)) QUOT(s(x:S),s(y:S)) -> QUOT(minus(s(x:S),s(y:S)),s(y:S)) -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) Problem 1: SCC Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) QUOT(s(x:S),s(y:S)) -> MINUS(s(x:S),s(y:S)) QUOT(s(x:S),s(y:S)) -> QUOT(minus(s(x:S),s(y:S)),s(y:S)) -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) ->->-> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->->Cycle: ->->-> Pairs: QUOT(s(x:S),s(y:S)) -> QUOT(minus(s(x:S),s(y:S)),s(y:S)) ->->-> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->->Cycle: ->->-> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) ->->-> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Narrowing Processor: -> Pairs: QUOT(s(x:S),s(y:S)) -> QUOT(minus(s(x:S),s(y:S)),s(y:S)) -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Narrowed Pairs: ->->Original Pair: QUOT(s(x:S),s(y:S)) -> QUOT(minus(s(x:S),s(y:S)),s(y:S)) ->-> Narrowed pairs: QUOT(s(x:S),s(y:S)) -> QUOT(minus(x:S,y:S),s(y:S)) Problem 1.2: SCC Processor: -> Pairs: QUOT(s(x:S),s(y:S)) -> QUOT(minus(x:S,y:S),s(y:S)) -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: QUOT(s(x:S),s(y:S)) -> QUOT(minus(x:S,y:S),s(y:S)) ->->-> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) Problem 1.2: Reduction Pairs Processor: -> Pairs: QUOT(s(x:S),s(y:S)) -> QUOT(minus(x:S,y:S),s(y:S)) -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) -> Usable rules: minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [le](X1,X2) = 0 [minus](X1,X2) = 2.X1 + 1 [quot](X1,X2) = 0 [0] = 0 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 [QUOT](X1,X2) = 2.X1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Projection: pi(LE) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) minus(x:S,0) -> x:S quot(0,s(y:S)) -> 0 quot(s(x:S),s(y:S)) -> s(quot(minus(s(x:S),s(y:S)),s(y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.