YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 40 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPOrderProof [EQUIVALENT, 61 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) TRUE (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QReductionProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPOrderProof [EQUIVALENT, 65 ms] (41) QDP (42) PisEmptyProof [EQUIVALENT, 0 ms] (43) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) sort(nil) -> nil sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(n), s(m)) -> EQ(n, m) LE(s(n), s(m)) -> LE(n, m) MIN(cons(n, cons(m, x))) -> IF_MIN(le(n, m), cons(n, cons(m, x))) MIN(cons(n, cons(m, x))) -> LE(n, m) IF_MIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x)) IF_MIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x)) REPLACE(n, m, cons(k, x)) -> IF_REPLACE(eq(n, k), n, m, cons(k, x)) REPLACE(n, m, cons(k, x)) -> EQ(n, k) IF_REPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x) SORT(cons(n, x)) -> MIN(cons(n, x)) SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x)) SORT(cons(n, x)) -> REPLACE(min(cons(n, x)), n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) sort(nil) -> nil sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 4 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(n), s(m)) -> LE(n, m) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) sort(nil) -> nil sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(n), s(m)) -> LE(n, m) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(n), s(m)) -> LE(n, m) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(n), s(m)) -> LE(n, m) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(n, cons(m, x))) -> IF_MIN(le(n, m), cons(n, cons(m, x))) IF_MIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x)) IF_MIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) sort(nil) -> nil sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(n, cons(m, x))) -> IF_MIN(le(n, m), cons(n, cons(m, x))) IF_MIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x)) IF_MIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x)) The TRS R consists of the following rules: le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(n, cons(m, x))) -> IF_MIN(le(n, m), cons(n, cons(m, x))) IF_MIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x)) IF_MIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x)) The TRS R consists of the following rules: le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_MIN(true, cons(n, cons(m, x))) -> MIN(cons(n, x)) IF_MIN(false, cons(n, cons(m, x))) -> MIN(cons(m, x)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MIN(x1) = x1 cons(x1, x2) = cons(x2) IF_MIN(x1, x2) = x2 Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 cons_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(n, cons(m, x))) -> IF_MIN(le(n, m), cons(n, cons(m, x))) The TRS R consists of the following rules: le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (20) TRUE ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(n), s(m)) -> EQ(n, m) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) sort(nil) -> nil sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(n), s(m)) -> EQ(n, m) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(n), s(m)) -> EQ(n, m) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(n), s(m)) -> EQ(n, m) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: REPLACE(n, m, cons(k, x)) -> IF_REPLACE(eq(n, k), n, m, cons(k, x)) IF_REPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) sort(nil) -> nil sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: REPLACE(n, m, cons(k, x)) -> IF_REPLACE(eq(n, k), n, m, cons(k, x)) IF_REPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: REPLACE(n, m, cons(k, x)) -> IF_REPLACE(eq(n, k), n, m, cons(k, x)) IF_REPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *IF_REPLACE(false, n, m, cons(k, x)) -> REPLACE(n, m, x) The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3 *REPLACE(n, m, cons(k, x)) -> IF_REPLACE(eq(n, k), n, m, cons(k, x)) The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) sort(nil) -> nil sort(cons(n, x)) -> cons(min(cons(n, x)), sort(replace(min(cons(n, x)), n, x))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x)) The TRS R consists of the following rules: min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) sort(nil) sort(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. sort(nil) sort(cons(x0, x1)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x)) The TRS R consists of the following rules: min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. SORT(cons(n, x)) -> SORT(replace(min(cons(n, x)), n, x)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( SORT_1(x_1) ) = 2x_1 + 2 POL( replace_3(x_1, ..., x_3) ) = 2x_2 + x_3 + 1 POL( min_1(x_1) ) = max{0, x_1 - 1} POL( cons_2(x_1, x_2) ) = 2x_1 + x_2 + 2 POL( 0 ) = 2 POL( nil ) = 1 POL( s_1(x_1) ) = 2 POL( if_min_2(x_1, x_2) ) = max{0, 2x_1 + x_2 - 2} POL( le_2(x_1, x_2) ) = x_1 + 2x_2 + 2 POL( true ) = 0 POL( false ) = 0 POL( if_replace_4(x_1, ..., x_4) ) = 2x_3 + x_4 + 1 POL( eq_2(x_1, x_2) ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) ---------------------------------------- (41) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: min(cons(0, nil)) -> 0 min(cons(s(n), nil)) -> s(n) min(cons(n, cons(m, x))) -> if_min(le(n, m), cons(n, cons(m, x))) if_min(true, cons(n, cons(m, x))) -> min(cons(n, x)) if_min(false, cons(n, cons(m, x))) -> min(cons(m, x)) replace(n, m, nil) -> nil replace(n, m, cons(k, x)) -> if_replace(eq(n, k), n, m, cons(k, x)) eq(0, 0) -> true eq(0, s(m)) -> false eq(s(n), 0) -> false eq(s(n), s(m)) -> eq(n, m) if_replace(true, n, m, cons(k, x)) -> cons(m, x) if_replace(false, n, m, cons(k, x)) -> cons(k, replace(n, m, x)) le(0, m) -> true le(s(n), 0) -> false le(s(n), s(m)) -> le(n, m) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) if_min(true, cons(x0, cons(x1, x2))) if_min(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) if_replace(true, x0, x1, cons(x2, x3)) if_replace(false, x0, x1, cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (43) YES