YES Problem 1: (VAR v_NonEmpty:S x:S y:S z:S) (RULES plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: PLUS(s(x:S),y:S) -> PLUS(x:S,y:S) QUOT(s(x:S),s(y:S),z:S) -> QUOT(x:S,y:S,z:S) QUOT(x:S,0,s(z:S)) -> PLUS(z:S,s(0)) QUOT(x:S,0,s(z:S)) -> QUOT(x:S,plus(z:S,s(0)),s(z:S)) -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) Problem 1: SCC Processor: -> Pairs: PLUS(s(x:S),y:S) -> PLUS(x:S,y:S) QUOT(s(x:S),s(y:S),z:S) -> QUOT(x:S,y:S,z:S) QUOT(x:S,0,s(z:S)) -> PLUS(z:S,s(0)) QUOT(x:S,0,s(z:S)) -> QUOT(x:S,plus(z:S,s(0)),s(z:S)) -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: PLUS(s(x:S),y:S) -> PLUS(x:S,y:S) ->->-> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ->->Cycle: ->->-> Pairs: QUOT(s(x:S),s(y:S),z:S) -> QUOT(x:S,y:S,z:S) QUOT(x:S,0,s(z:S)) -> QUOT(x:S,plus(z:S,s(0)),s(z:S)) ->->-> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: PLUS(s(x:S),y:S) -> PLUS(x:S,y:S) -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ->Projection: pi(PLUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: QUOT(s(x:S),s(y:S),z:S) -> QUOT(x:S,y:S,z:S) QUOT(x:S,0,s(z:S)) -> QUOT(x:S,plus(z:S,s(0)),s(z:S)) -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ->Projection: pi(QUOT) = 1 Problem 1.2: SCC Processor: -> Pairs: QUOT(x:S,0,s(z:S)) -> QUOT(x:S,plus(z:S,s(0)),s(z:S)) -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: QUOT(x:S,0,s(z:S)) -> QUOT(x:S,plus(z:S,s(0)),s(z:S)) ->->-> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) Problem 1.2: Reduction Pairs Processor: -> Pairs: QUOT(x:S,0,s(z:S)) -> QUOT(x:S,plus(z:S,s(0)),s(z:S)) -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) -> Usable rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [plus](X1,X2) = X2 + 1 [quot](X1,X2,X3) = 0 [0] = 2 [fSNonEmpty] = 0 [s](X) = 0 [PLUS](X1,X2) = 0 [QUOT](X1,X2,X3) = 2.X2 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: plus(0,y:S) -> y:S plus(s(x:S),y:S) -> s(plus(x:S,y:S)) quot(0,s(y:S),s(z:S)) -> 0 quot(s(x:S),s(y:S),z:S) -> quot(x:S,y:S,z:S) quot(x:S,0,s(z:S)) -> s(quot(x:S,plus(z:S,s(0)),s(z:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.