YES Problem 1: (VAR v_NonEmpty:S m:S n:S x:S y:S) (RULES sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: SUM(cons(0,x:S),y:S) -> SUM(x:S,y:S) SUM(cons(s(n:S),x:S),cons(m:S,y:S)) -> SUM(cons(n:S,x:S),cons(s(m:S),y:S)) WEIGHT(cons(n:S,cons(m:S,x:S))) -> SUM(cons(n:S,cons(m:S,x:S)),cons(0,x:S)) WEIGHT(cons(n:S,cons(m:S,x:S))) -> WEIGHT(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S Problem 1: SCC Processor: -> Pairs: SUM(cons(0,x:S),y:S) -> SUM(x:S,y:S) SUM(cons(s(n:S),x:S),cons(m:S,y:S)) -> SUM(cons(n:S,x:S),cons(s(m:S),y:S)) WEIGHT(cons(n:S,cons(m:S,x:S))) -> SUM(cons(n:S,cons(m:S,x:S)),cons(0,x:S)) WEIGHT(cons(n:S,cons(m:S,x:S))) -> WEIGHT(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: SUM(cons(0,x:S),y:S) -> SUM(x:S,y:S) SUM(cons(s(n:S),x:S),cons(m:S,y:S)) -> SUM(cons(n:S,x:S),cons(s(m:S),y:S)) ->->-> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S ->->Cycle: ->->-> Pairs: WEIGHT(cons(n:S,cons(m:S,x:S))) -> WEIGHT(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) ->->-> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S The problem is decomposed in 2 subproblems. Problem 1.1: Reduction Pairs Processor: -> Pairs: SUM(cons(0,x:S),y:S) -> SUM(x:S,y:S) SUM(cons(s(n:S),x:S),cons(m:S,y:S)) -> SUM(cons(n:S,x:S),cons(s(m:S),y:S)) -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [sum](X1,X2) = 0 [weight](X) = 0 [0] = 2 [cons](X1,X2) = 2.X2 + 2 [fSNonEmpty] = 0 [nil] = 0 [s](X) = 2.X + 2 [SUM](X1,X2) = 2.X1 [WEIGHT](X) = 0 Problem 1.1: SCC Processor: -> Pairs: SUM(cons(s(n:S),x:S),cons(m:S,y:S)) -> SUM(cons(n:S,x:S),cons(s(m:S),y:S)) -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: SUM(cons(s(n:S),x:S),cons(m:S,y:S)) -> SUM(cons(n:S,x:S),cons(s(m:S),y:S)) ->->-> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S Problem 1.1: Reduction Pairs Processor: -> Pairs: SUM(cons(s(n:S),x:S),cons(m:S,y:S)) -> SUM(cons(n:S,x:S),cons(s(m:S),y:S)) -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [sum](X1,X2) = 0 [weight](X) = 0 [0] = 0 [cons](X1,X2) = 2.X1 [fSNonEmpty] = 0 [nil] = 0 [s](X) = 2.X + 2 [SUM](X1,X2) = 2.X1 [WEIGHT](X) = 0 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: WEIGHT(cons(n:S,cons(m:S,x:S))) -> WEIGHT(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S -> Usable rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [sum](X1,X2) = X2 + 1 [weight](X) = 0 [0] = 1 [cons](X1,X2) = 2.X1 + 2.X2 + 2 [fSNonEmpty] = 0 [nil] = 0 [s](X) = 0 [SUM](X1,X2) = 0 [WEIGHT](X) = 2.X Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: sum(cons(0,x:S),y:S) -> sum(x:S,y:S) sum(cons(s(n:S),x:S),cons(m:S,y:S)) -> sum(cons(n:S,x:S),cons(s(m:S),y:S)) sum(nil,y:S) -> y:S weight(cons(n:S,cons(m:S,x:S))) -> weight(sum(cons(n:S,cons(m:S,x:S)),cons(0,x:S))) weight(cons(n:S,nil)) -> n:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.