YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 27 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (11) QDP (12) PisEmptyProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPOrderProof [EQUIVALENT, 29 ms] (20) QDP (21) PisEmptyProof [EQUIVALENT, 0 ms] (22) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) SUM(cons(0, x), y) -> SUM(x, y) WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) WEIGHT(cons(n, cons(m, x))) -> SUM(cons(n, cons(m, x)), cons(0, x)) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) R is empty. The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(0) = 0 POL(SUM(x_1, x_2)) = 2*x_1 + x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = 2 + x_1 ---------------------------------------- (11) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The TRS R consists of the following rules: sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The TRS R consists of the following rules: sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. WEIGHT(x1) = x1 cons(x1, x2) = cons(x2) sum(x1, x2) = x2 Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 cons_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y ---------------------------------------- (20) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (22) YES