YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: F(s(x:S)) -> F(x:S) G(s(x:S),s(y:S)) -> F(x:S) G(s(x:S),s(y:S)) -> IF(f(x:S),s(x:S),s(y:S)) G(x:S,c(y:S)) -> G(s(c(y:S)),y:S) G(x:S,c(y:S)) -> G(x:S,g(s(c(y:S)),y:S)) -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S Problem 1: SCC Processor: -> Pairs: F(s(x:S)) -> F(x:S) G(s(x:S),s(y:S)) -> F(x:S) G(s(x:S),s(y:S)) -> IF(f(x:S),s(x:S),s(y:S)) G(x:S,c(y:S)) -> G(s(c(y:S)),y:S) G(x:S,c(y:S)) -> G(x:S,g(s(c(y:S)),y:S)) -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(s(x:S)) -> F(x:S) ->->-> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->->Cycle: ->->-> Pairs: G(x:S,c(y:S)) -> G(s(c(y:S)),y:S) G(x:S,c(y:S)) -> G(x:S,g(s(c(y:S)),y:S)) ->->-> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: F(s(x:S)) -> F(x:S) -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->Projection: pi(F) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: G(x:S,c(y:S)) -> G(s(c(y:S)),y:S) G(x:S,c(y:S)) -> G(x:S,g(s(c(y:S)),y:S)) -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S -> Usable rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 0 [g](X1,X2) = 2.X2 + 2 [if](X1,X2,X3) = X2 + 2.X3 [0] = 1 [1] = 0 [c](X) = 2.X + 2 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2 [true] = 0 [F](X) = 0 [G](X1,X2) = 2.X2 [IF](X1,X2,X3) = 0 Problem 1.2: SCC Processor: -> Pairs: G(x:S,c(y:S)) -> G(x:S,g(s(c(y:S)),y:S)) -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: G(x:S,c(y:S)) -> G(x:S,g(s(c(y:S)),y:S)) ->->-> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S Problem 1.2: Reduction Pairs Processor: -> Pairs: G(x:S,c(y:S)) -> G(x:S,g(s(c(y:S)),y:S)) -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S -> Usable rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X) = 2 [g](X1,X2) = X1 + 2.X2 [if](X1,X2,X3) = 2.X2 + X3 [0] = 2 [1] = 1 [c](X) = 2.X + 2 [fSNonEmpty] = 0 [false] = 1 [s](X) = 1 [true] = 1 [F](X) = 0 [G](X1,X2) = 2.X2 [IF](X1,X2,X3) = 0 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: f(0) -> ttrue f(1) -> ffalse f(s(x:S)) -> f(x:S) g(s(x:S),s(y:S)) -> if(f(x:S),s(x:S),s(y:S)) g(x:S,c(y:S)) -> g(x:S,g(s(c(y:S)),y:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.