YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 119 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 72 ms] (46) QDP (47) DependencyGraphProof [EQUIVALENT, 0 ms] (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) QReductionProof [EQUIVALENT, 0 ms] (52) QDP (53) UsableRulesReductionPairsProof [EQUIVALENT, 7 ms] (54) QDP (55) DependencyGraphProof [EQUIVALENT, 0 ms] (56) QDP (57) QReductionProof [EQUIVALENT, 0 ms] (58) QDP (59) QDPSizeChangeProof [EQUIVALENT, 0 ms] (60) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) ACTIVE(length(nil)) -> MARK(0) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) ACTIVE(length(cons(X, Y))) -> S(length1(Y)) ACTIVE(length(cons(X, Y))) -> LENGTH1(Y) ACTIVE(length1(X)) -> MARK(length(X)) ACTIVE(length1(X)) -> LENGTH(X) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(nil) -> ACTIVE(nil) MARK(0) -> ACTIVE(0) MARK(length1(X)) -> ACTIVE(length1(X)) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) LENGTH(mark(X)) -> LENGTH(X) LENGTH(active(X)) -> LENGTH(X) LENGTH1(mark(X)) -> LENGTH1(X) LENGTH1(active(X)) -> LENGTH1(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 12 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH1(active(X)) -> LENGTH1(X) LENGTH1(mark(X)) -> LENGTH1(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH1(active(X)) -> LENGTH1(X) LENGTH1(mark(X)) -> LENGTH1(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH1(active(X)) -> LENGTH1(X) LENGTH1(mark(X)) -> LENGTH1(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH1(active(X)) -> LENGTH1(X) The graph contains the following edges 1 > 1 *LENGTH1(mark(X)) -> LENGTH1(X) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH(active(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 *LENGTH(mark(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) The TRS R consists of the following rules: mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(length(cons(X, Y))) -> mark(s(length1(Y))) mark(s(X)) -> active(s(mark(X))) active(length1(X)) -> mark(length(X)) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) s(active(X)) -> s(X) s(mark(X)) -> s(X) active(length(nil)) -> mark(0) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(s(X)) -> ACTIVE(s(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = 2x_1 POL( cons_2(x_1, x_2) ) = max{0, -2} POL( from_1(x_1) ) = 1 POL( s_1(x_1) ) = 0 POL( mark_1(x_1) ) = 2 POL( active_1(x_1) ) = max{0, x_1 - 2} POL( length_1(x_1) ) = 1 POL( length1_1(x_1) ) = 1 POL( nil ) = 0 POL( 0 ) = 0 POL( MARK_1(x_1) ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) The TRS R consists of the following rules: mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(length(cons(X, Y))) -> mark(s(length1(Y))) mark(s(X)) -> active(s(mark(X))) active(length1(X)) -> mark(length(X)) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) s(active(X)) -> s(X) s(mark(X)) -> s(X) active(length(nil)) -> mark(0) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = x_1 + 2 POL( from_1(x_1) ) = 2x_1 + 1 POL( mark_1(x_1) ) = x_1 POL( active_1(x_1) ) = x_1 POL( cons_2(x_1, x_2) ) = x_1 POL( s_1(x_1) ) = x_1 POL( length_1(x_1) ) = 1 POL( length1_1(x_1) ) = 1 POL( nil ) = 2 POL( 0 ) = 0 POL( MARK_1(x_1) ) = 2x_1 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(length(cons(X, Y))) -> mark(s(length1(Y))) mark(s(X)) -> active(s(mark(X))) active(length1(X)) -> mark(length(X)) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(active(X)) -> from(X) from(mark(X)) -> from(X) active(length(nil)) -> mark(0) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) The TRS R consists of the following rules: mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(length(cons(X, Y))) -> mark(s(length1(Y))) mark(s(X)) -> active(s(mark(X))) active(length1(X)) -> mark(length(X)) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) s(active(X)) -> s(X) s(mark(X)) -> s(X) active(length(nil)) -> mark(0) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(length(X)) -> ACTIVE(length(X)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) The TRS R consists of the following rules: mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(length(cons(X, Y))) -> mark(s(length1(Y))) mark(s(X)) -> active(s(mark(X))) active(length1(X)) -> mark(length(X)) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) s(active(X)) -> s(X) s(mark(X)) -> s(X) active(length(nil)) -> mark(0) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(length(X)) -> ACTIVE(length(X)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) R is empty. The set Q consists of the following terms: active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(from(x0)) active(length(nil)) active(length(cons(x0, x1))) active(length1(x0)) mark(from(x0)) mark(cons(x0, x1)) mark(s(x0)) mark(length(x0)) mark(nil) mark(0) mark(length1(x0)) from(mark(x0)) from(active(x0)) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(cons(X1, X2)) -> MARK(X1) MARK(length(X)) -> ACTIVE(length(X)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: MARK(cons(X1, X2)) -> MARK(X1) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(ACTIVE(x_1)) = 2*x_1 POL(MARK(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = x_1 + 2*x_2 POL(length(x_1)) = x_1 POL(length1(x_1)) = 2*x_1 POL(s(x_1)) = x_1 ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(length1(X)) -> ACTIVE(length1(X)) ACTIVE(length1(X)) -> MARK(length(X)) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) s(mark(x0)) s(active(x0)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) length(mark(x0)) length(active(x0)) length1(mark(x0)) length1(active(x0)) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) R is empty. The set Q consists of the following terms: s(mark(x0)) s(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(s(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (60) YES