YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 14 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPSizeChangeProof [EQUIVALENT, 0 ms] (46) YES (47) QDP (48) UsableRulesProof [EQUIVALENT, 0 ms] (49) QDP (50) QReductionProof [EQUIVALENT, 0 ms] (51) QDP (52) QDPSizeChangeProof [EQUIVALENT, 0 ms] (53) YES (54) QDP (55) UsableRulesProof [EQUIVALENT, 0 ms] (56) QDP (57) QReductionProof [EQUIVALENT, 0 ms] (58) QDP (59) QDPSizeChangeProof [EQUIVALENT, 0 ms] (60) YES (61) QDP (62) UsableRulesProof [EQUIVALENT, 0 ms] (63) QDP (64) QDPOrderProof [EQUIVALENT, 131 ms] (65) QDP (66) QDPOrderProof [EQUIVALENT, 70 ms] (67) QDP (68) QDPQMonotonicMRRProof [EQUIVALENT, 83 ms] (69) QDP (70) QDPOrderProof [EQUIVALENT, 165 ms] (71) QDP (72) QDPQMonotonicMRRProof [EQUIVALENT, 58 ms] (73) QDP (74) QDPQMonotonicMRRProof [EQUIVALENT, 53 ms] (75) QDP (76) UsableRulesProof [EQUIVALENT, 0 ms] (77) QDP (78) QReductionProof [EQUIVALENT, 0 ms] (79) QDP (80) QDPSizeChangeProof [EQUIVALENT, 0 ms] (81) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) ACTIVE(terms(N)) -> CONS(recip(sqr(N)), terms(s(N))) ACTIVE(terms(N)) -> RECIP(sqr(N)) ACTIVE(terms(N)) -> SQR(N) ACTIVE(terms(N)) -> TERMS(s(N)) ACTIVE(terms(N)) -> S(N) ACTIVE(sqr(0)) -> MARK(0) ACTIVE(sqr(s(X))) -> MARK(s(add(sqr(X), dbl(X)))) ACTIVE(sqr(s(X))) -> S(add(sqr(X), dbl(X))) ACTIVE(sqr(s(X))) -> ADD(sqr(X), dbl(X)) ACTIVE(sqr(s(X))) -> SQR(X) ACTIVE(sqr(s(X))) -> DBL(X) ACTIVE(dbl(0)) -> MARK(0) ACTIVE(dbl(s(X))) -> MARK(s(s(dbl(X)))) ACTIVE(dbl(s(X))) -> S(s(dbl(X))) ACTIVE(dbl(s(X))) -> S(dbl(X)) ACTIVE(dbl(s(X))) -> DBL(X) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(add(s(X), Y)) -> S(add(X, Y)) ACTIVE(add(s(X), Y)) -> ADD(X, Y) ACTIVE(first(0, X)) -> MARK(nil) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z)) ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> TERMS(mark(X)) MARK(terms(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(recip(X)) -> RECIP(mark(X)) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> SQR(mark(X)) MARK(sqr(X)) -> MARK(X) MARK(s(X)) -> ACTIVE(s(X)) MARK(0) -> ACTIVE(0) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> DBL(mark(X)) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> FIRST(mark(X1), mark(X2)) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(nil) -> ACTIVE(nil) TERMS(mark(X)) -> TERMS(X) TERMS(active(X)) -> TERMS(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) RECIP(mark(X)) -> RECIP(X) RECIP(active(X)) -> RECIP(X) SQR(mark(X)) -> SQR(X) SQR(active(X)) -> SQR(X) S(mark(X)) -> S(X) S(active(X)) -> S(X) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) DBL(mark(X)) -> DBL(X) DBL(active(X)) -> DBL(X) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 32 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FIRST(X1, mark(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *FIRST(mark(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(active(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(X1, active(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: DBL(active(X)) -> DBL(X) DBL(mark(X)) -> DBL(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DBL(active(X)) -> DBL(X) The graph contains the following edges 1 > 1 *DBL(mark(X)) -> DBL(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(X1, mark(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *ADD(mark(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(active(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(X1, active(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: SQR(active(X)) -> SQR(X) SQR(mark(X)) -> SQR(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SQR(active(X)) -> SQR(X) The graph contains the following edges 1 > 1 *SQR(mark(X)) -> SQR(X) The graph contains the following edges 1 > 1 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: RECIP(active(X)) -> RECIP(X) RECIP(mark(X)) -> RECIP(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *RECIP(active(X)) -> RECIP(X) The graph contains the following edges 1 > 1 *RECIP(mark(X)) -> RECIP(X) The graph contains the following edges 1 > 1 ---------------------------------------- (46) YES ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (53) YES ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: TERMS(active(X)) -> TERMS(X) TERMS(mark(X)) -> TERMS(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TERMS(active(X)) -> TERMS(X) The graph contains the following edges 1 > 1 *TERMS(mark(X)) -> TERMS(X) The graph contains the following edges 1 > 1 ---------------------------------------- (60) YES ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(add(0, X)) -> MARK(X) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> ACTIVE(recip(mark(X))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(terms(X)) -> active(terms(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) terms(mark(X)) -> terms(X) terms(active(X)) -> terms(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) recip(mark(X)) -> recip(X) recip(active(X)) -> recip(X) sqr(mark(X)) -> sqr(X) sqr(active(X)) -> sqr(X) s(mark(X)) -> s(X) s(active(X)) -> s(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(mark(X)) -> dbl(X) dbl(active(X)) -> dbl(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (63) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) ACTIVE(add(0, X)) -> MARK(X) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> ACTIVE(recip(mark(X))) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (64) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(add(0, X)) -> MARK(X) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 ACTIVE(x1) = x1 mark(x1) = x1 terms(x1) = x1 recip(x1) = x1 sqr(x1) = x1 add(x1, x2) = add(x1, x2) 0 = 0 first(x1, x2) = first(x1, x2) s(x1) = s dbl(x1) = x1 active(x1) = x1 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=2 0=4 first_2=2 add_2=1 nil=5 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) ---------------------------------------- (65) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(dbl(X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (66) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(dbl(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 ACTIVE(x1) = x1 mark(x1) = x1 terms(x1) = x1 recip(x1) = x1 sqr(x1) = x1 add(x1, x2) = x2 dbl(x1) = dbl(x1) first(x1, x2) = first(x2) active(x1) = x1 s(x1) = s 0 = 0 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=1 0=2 first_1=2 dbl_1=1 nil=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) ---------------------------------------- (67) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (68) QDPQMonotonicMRRProof (EQUIVALENT) By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain. Strictly oriented dependency pairs: MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 1 POL(active(x_1)) = 0 POL(add(x_1, x_2)) = 0 POL(cons(x_1, x_2)) = 1 POL(dbl(x_1)) = 1 POL(first(x_1, x_2)) = 1 POL(mark(x_1)) = 0 POL(nil) = 0 POL(recip(x_1)) = 1 POL(s(x_1)) = 0 POL(sqr(x_1)) = 1 POL(terms(x_1)) = 1 ---------------------------------------- (69) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(sqr(X)) -> MARK(X) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (70) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(sqr(X)) -> ACTIVE(sqr(mark(X))) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = max{0, x_1 - 1} POL( cons_2(x_1, x_2) ) = max{0, -2} POL( dbl_1(x_1) ) = 2 POL( first_2(x_1, x_2) ) = 0 POL( recip_1(x_1) ) = 2 POL( sqr_1(x_1) ) = max{0, -2} POL( terms_1(x_1) ) = 2 POL( mark_1(x_1) ) = 2 POL( active_1(x_1) ) = max{0, -2} POL( s_1(x_1) ) = max{0, 2x_1 - 2} POL( add_2(x_1, x_2) ) = max{0, -2} POL( 0 ) = 0 POL( nil ) = 0 POL( MARK_1(x_1) ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) ---------------------------------------- (71) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (72) QDPQMonotonicMRRProof (EQUIVALENT) By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain. Strictly oriented dependency pairs: MARK(recip(X)) -> ACTIVE(recip(mark(X))) MARK(dbl(X)) -> ACTIVE(dbl(mark(X))) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 1 POL(active(x_1)) = 0 POL(add(x_1, x_2)) = 0 POL(cons(x_1, x_2)) = 0 POL(dbl(x_1)) = 0 POL(first(x_1, x_2)) = 0 POL(mark(x_1)) = 0 POL(nil) = 0 POL(recip(x_1)) = 0 POL(s(x_1)) = 0 POL(sqr(x_1)) = 0 POL(terms(x_1)) = 1 ---------------------------------------- (73) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> MARK(X) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (74) QDPQMonotonicMRRProof (EQUIVALENT) By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain. Strictly oriented dependency pairs: ACTIVE(terms(N)) -> MARK(cons(recip(sqr(N)), terms(s(N)))) MARK(terms(X)) -> ACTIVE(terms(mark(X))) MARK(terms(X)) -> MARK(X) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 2*x_1 POL(active(x_1)) = x_1 POL(add(x_1, x_2)) = 2 + 2*x_2 POL(cons(x_1, x_2)) = x_1 POL(dbl(x_1)) = 2 POL(first(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(mark(x_1)) = 2*x_1 POL(nil) = 1 POL(recip(x_1)) = x_1 POL(s(x_1)) = 0 POL(sqr(x_1)) = x_1 POL(terms(x_1)) = 2 + 2*x_1 ---------------------------------------- (75) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) The TRS R consists of the following rules: mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(terms(N)) -> mark(cons(recip(sqr(N)), terms(s(N)))) active(add(0, X)) -> mark(X) mark(terms(X)) -> active(terms(mark(X))) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(recip(X)) -> active(recip(mark(X))) mark(sqr(X)) -> active(sqr(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(dbl(X)) -> active(dbl(mark(X))) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(s(X)) -> active(s(X)) mark(0) -> active(0) mark(nil) -> active(nil) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) active(sqr(0)) -> mark(0) active(sqr(s(X))) -> mark(s(add(sqr(X), dbl(X)))) active(dbl(0)) -> mark(0) active(dbl(s(X))) -> mark(s(s(dbl(X)))) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) terms(active(X)) -> terms(X) terms(mark(X)) -> terms(X) recip(active(X)) -> recip(X) recip(mark(X)) -> recip(X) sqr(active(X)) -> sqr(X) sqr(mark(X)) -> sqr(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) dbl(active(X)) -> dbl(X) dbl(mark(X)) -> dbl(X) The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (76) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (77) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) R is empty. The set Q consists of the following terms: active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (78) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(terms(x0)) active(sqr(0)) active(sqr(s(x0))) active(dbl(0)) active(dbl(s(x0))) active(add(0, x0)) active(add(s(x0), x1)) active(first(0, x0)) active(first(s(x0), cons(x1, x2))) mark(terms(x0)) mark(cons(x0, x1)) mark(recip(x0)) mark(sqr(x0)) mark(s(x0)) mark(0) mark(add(x0, x1)) mark(dbl(x0)) mark(first(x0, x1)) mark(nil) terms(mark(x0)) terms(active(x0)) s(mark(x0)) s(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) dbl(mark(x0)) dbl(active(x0)) first(mark(x0), x1) first(x0, mark(x1)) first(active(x0), x1) first(x0, active(x1)) ---------------------------------------- (79) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) MARK(recip(X)) -> MARK(X) MARK(sqr(X)) -> MARK(X) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) recip(mark(x0)) recip(active(x0)) sqr(mark(x0)) sqr(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (80) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(recip(X)) -> MARK(X) The graph contains the following edges 1 > 1 *MARK(sqr(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (81) YES