YES Problem 1: (VAR v_NonEmpty:S X:S) (RULES active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVE(g(X:S)) -> H(X:S) ACTIVE(g(X:S)) -> MARK(h(X:S)) ACTIVE(h(d)) -> MARK(g(c)) ACTIVE(c) -> MARK(d) G(active(X:S)) -> G(X:S) G(mark(X:S)) -> G(X:S) H(active(X:S)) -> H(X:S) H(mark(X:S)) -> H(X:S) MARK(g(X:S)) -> ACTIVE(g(X:S)) MARK(h(X:S)) -> ACTIVE(h(X:S)) MARK(c) -> ACTIVE(c) -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) Problem 1: SCC Processor: -> Pairs: ACTIVE(g(X:S)) -> H(X:S) ACTIVE(g(X:S)) -> MARK(h(X:S)) ACTIVE(h(d)) -> MARK(g(c)) ACTIVE(c) -> MARK(d) G(active(X:S)) -> G(X:S) G(mark(X:S)) -> G(X:S) H(active(X:S)) -> H(X:S) H(mark(X:S)) -> H(X:S) MARK(g(X:S)) -> ACTIVE(g(X:S)) MARK(h(X:S)) -> ACTIVE(h(X:S)) MARK(c) -> ACTIVE(c) -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: H(active(X:S)) -> H(X:S) H(mark(X:S)) -> H(X:S) ->->-> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->->Cycle: ->->-> Pairs: G(active(X:S)) -> G(X:S) G(mark(X:S)) -> G(X:S) ->->-> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->->Cycle: ->->-> Pairs: ACTIVE(g(X:S)) -> MARK(h(X:S)) ACTIVE(h(d)) -> MARK(g(c)) MARK(g(X:S)) -> ACTIVE(g(X:S)) MARK(h(X:S)) -> ACTIVE(h(X:S)) ->->-> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: H(active(X:S)) -> H(X:S) H(mark(X:S)) -> H(X:S) -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->Projection: pi(H) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: G(active(X:S)) -> G(X:S) G(mark(X:S)) -> G(X:S) -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->Projection: pi(G) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: ACTIVE(g(X:S)) -> MARK(h(X:S)) ACTIVE(h(d)) -> MARK(g(c)) MARK(g(X:S)) -> ACTIVE(g(X:S)) MARK(h(X:S)) -> ACTIVE(h(X:S)) -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) -> Usable rules: g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [active](X) = 2.X [g](X) = 2.X + 2 [h](X) = 2.X + 1 [mark](X) = 2.X [c] = 1 [d] = 2 [fSNonEmpty] = 0 [ACTIVE](X) = 2.X + 2 [G](X) = 0 [H](X) = 0 [MARK](X) = 2.X + 2 Problem 1.3: SCC Processor: -> Pairs: ACTIVE(h(d)) -> MARK(g(c)) MARK(g(X:S)) -> ACTIVE(g(X:S)) MARK(h(X:S)) -> ACTIVE(h(X:S)) -> Rules: active(g(X:S)) -> mark(h(X:S)) active(h(d)) -> mark(g(c)) active(c) -> mark(d) g(active(X:S)) -> g(X:S) g(mark(X:S)) -> g(X:S) h(active(X:S)) -> h(X:S) h(mark(X:S)) -> h(X:S) mark(g(X:S)) -> active(g(X:S)) mark(h(X:S)) -> active(h(X:S)) mark(c) -> active(c) mark(d) -> active(d) ->Strongly Connected Components: There is no strongly connected component The problem is finite.