YES Problem 1: (VAR v_NonEmpty:S X:S) (RULES active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ) (STRATEGY INNERMOST) Problem 1: Dependency Pairs Processor: -> Pairs: F(ok(X:S)) -> F(X:S) G(ok(X:S)) -> G(X:S) PROPER(f(X:S)) -> F(proper(X:S)) PROPER(f(X:S)) -> PROPER(X:S) PROPER(g(X:S)) -> G(proper(X:S)) PROPER(g(X:S)) -> PROPER(X:S) TOP(mark(X:S)) -> PROPER(X:S) TOP(mark(X:S)) -> TOP(proper(X:S)) TOP(ok(X:S)) -> ACTIVE(X:S) TOP(ok(X:S)) -> TOP(active(X:S)) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) Problem 1: SCC Processor: -> Pairs: F(ok(X:S)) -> F(X:S) G(ok(X:S)) -> G(X:S) PROPER(f(X:S)) -> F(proper(X:S)) PROPER(f(X:S)) -> PROPER(X:S) PROPER(g(X:S)) -> G(proper(X:S)) PROPER(g(X:S)) -> PROPER(X:S) TOP(mark(X:S)) -> PROPER(X:S) TOP(mark(X:S)) -> TOP(proper(X:S)) TOP(ok(X:S)) -> ACTIVE(X:S) TOP(ok(X:S)) -> TOP(active(X:S)) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: G(ok(X:S)) -> G(X:S) ->->-> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->->Cycle: ->->-> Pairs: F(ok(X:S)) -> F(X:S) ->->-> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->->Cycle: ->->-> Pairs: PROPER(f(X:S)) -> PROPER(X:S) PROPER(g(X:S)) -> PROPER(X:S) ->->-> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->->Cycle: ->->-> Pairs: TOP(mark(X:S)) -> TOP(proper(X:S)) TOP(ok(X:S)) -> TOP(active(X:S)) ->->-> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) The problem is decomposed in 4 subproblems. Problem 1.1: Subterm Processor: -> Pairs: G(ok(X:S)) -> G(X:S) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Projection: pi(G) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: F(ok(X:S)) -> F(X:S) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Projection: pi(F) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: PROPER(f(X:S)) -> PROPER(X:S) PROPER(g(X:S)) -> PROPER(X:S) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Projection: pi(PROPER) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Reduction Pairs Processor: -> Pairs: TOP(mark(X:S)) -> TOP(proper(X:S)) TOP(ok(X:S)) -> TOP(active(X:S)) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) -> Usable rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [active](X) = X [f](X) = 1 [g](X) = 0 [proper](X) = X [top](X) = 0 [c] = 2 [fSNonEmpty] = 0 [mark](X) = X + 1 [ok](X) = X [ACTIVE](X) = 0 [F](X) = 0 [G](X) = 0 [PROPER](X) = 0 [TOP](X) = 2.X Problem 1.4: SCC Processor: -> Pairs: TOP(ok(X:S)) -> TOP(active(X:S)) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: TOP(ok(X:S)) -> TOP(active(X:S)) ->->-> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) Problem 1.4: Reduction Pairs Processor: -> Pairs: TOP(ok(X:S)) -> TOP(active(X:S)) -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) -> Usable rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [active](X) = X + 1 [f](X) = X + 2 [g](X) = X [proper](X) = 0 [top](X) = 0 [c] = 1 [fSNonEmpty] = 0 [mark](X) = 2 [ok](X) = X + 2 [ACTIVE](X) = 0 [F](X) = 0 [G](X) = 0 [PROPER](X) = 0 [TOP](X) = X Problem 1.4: SCC Processor: -> Pairs: Empty -> Rules: active(f(g(X:S))) -> mark(g(X:S)) active(c) -> mark(f(g(c))) f(ok(X:S)) -> ok(f(X:S)) g(ok(X:S)) -> ok(g(X:S)) proper(f(X:S)) -> f(proper(X:S)) proper(g(X:S)) -> g(proper(X:S)) proper(c) -> ok(c) top(mark(X:S)) -> top(proper(X:S)) top(ok(X:S)) -> top(active(X:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.