YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSToCSRProof [SOUND, 0 ms] (2) CSR (3) CSRRRRProof [EQUIVALENT, 73 ms] (4) CSR (5) CSRRRRProof [EQUIVALENT, 0 ms] (6) CSR (7) CSRRRRProof [EQUIVALENT, 0 ms] (8) CSR (9) CSRRRRProof [EQUIVALENT, 0 ms] (10) CSR (11) CSRRRRProof [EQUIVALENT, 0 ms] (12) CSR (13) RisEmptyProof [EQUIVALENT, 1 ms] (14) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The set Q consists of the following terms: active(nats) active(zeros) active(adx(x0)) active(incr(x0)) active(hd(x0)) active(tl(x0)) adx(mark(x0)) incr(mark(x0)) hd(mark(x0)) tl(mark(x0)) proper(nats) proper(adx(x0)) proper(zeros) proper(cons(x0, x1)) proper(0) proper(incr(x0)) proper(s(x0)) proper(hd(x0)) proper(tl(x0)) adx(ok(x0)) cons(ok(x0), ok(x1)) incr(ok(x0)) s(ok(x0)) hd(ok(x0)) tl(ok(x0)) top(mark(x0)) top(ok(x0)) ---------------------------------------- (1) QTRSToCSRProof (SOUND) The following Q TRS is given: Q restricted rewrite system: The TRS R consists of the following rules: active(nats) -> mark(adx(zeros)) active(zeros) -> mark(cons(0, zeros)) active(incr(cons(X, Y))) -> mark(cons(s(X), incr(Y))) active(adx(cons(X, Y))) -> mark(incr(cons(X, adx(Y)))) active(hd(cons(X, Y))) -> mark(X) active(tl(cons(X, Y))) -> mark(Y) active(adx(X)) -> adx(active(X)) active(incr(X)) -> incr(active(X)) active(hd(X)) -> hd(active(X)) active(tl(X)) -> tl(active(X)) adx(mark(X)) -> mark(adx(X)) incr(mark(X)) -> mark(incr(X)) hd(mark(X)) -> mark(hd(X)) tl(mark(X)) -> mark(tl(X)) proper(nats) -> ok(nats) proper(adx(X)) -> adx(proper(X)) proper(zeros) -> ok(zeros) proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) proper(0) -> ok(0) proper(incr(X)) -> incr(proper(X)) proper(s(X)) -> s(proper(X)) proper(hd(X)) -> hd(proper(X)) proper(tl(X)) -> tl(proper(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) incr(ok(X)) -> ok(incr(X)) s(ok(X)) -> ok(s(X)) hd(ok(X)) -> ok(hd(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) The set Q consists of the following terms: active(nats) active(zeros) active(adx(x0)) active(incr(x0)) active(hd(x0)) active(tl(x0)) adx(mark(x0)) incr(mark(x0)) hd(mark(x0)) tl(mark(x0)) proper(nats) proper(adx(x0)) proper(zeros) proper(cons(x0, x1)) proper(0) proper(incr(x0)) proper(s(x0)) proper(hd(x0)) proper(tl(x0)) adx(ok(x0)) cons(ok(x0), ok(x1)) incr(ok(x0)) s(ok(x0)) hd(ok(x0)) tl(ok(x0)) top(mark(x0)) top(ok(x0)) Special symbols used for the transformation (see [GM04]): top: top_1, active: active_1, mark: mark_1, ok: ok_1, proper: proper_1 The replacement map contains the following entries: nats: empty set adx: {1} zeros: empty set cons: empty set 0: empty set incr: {1} s: empty set hd: {1} tl: {1} The QTRS contained just a subset of rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is sound, but not necessarily complete. ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(0, zeros) incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) hd(cons(X, Y)) -> X tl(cons(X, Y)) -> Y The replacement map contains the following entries: nats: empty set adx: {1} zeros: empty set cons: empty set 0: empty set incr: {1} s: empty set hd: {1} tl: {1} ---------------------------------------- (3) CSRRRRProof (EQUIVALENT) The following CSR is given: Context-sensitive rewrite system: The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(0, zeros) incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) hd(cons(X, Y)) -> X tl(cons(X, Y)) -> Y The replacement map contains the following entries: nats: empty set adx: {1} zeros: empty set cons: empty set 0: empty set incr: {1} s: empty set hd: {1} tl: {1} Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(nats) = [[1], [0]] >>> <<< POL(adx(x_1)) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< POL(zeros) = [[1], [0]] >>> <<< POL(cons(x_1, x_2)) = [[0], [0]] + [[1, 1], [0, 0]] * x_1 + [[1, 1], [0, 0]] * x_2 >>> <<< POL(0) = [[0], [0]] >>> <<< POL(incr(x_1)) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> <<< POL(s(x_1)) = [[0], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< POL(hd(x_1)) = [[1], [1]] + [[1, 1], [1, 1]] * x_1 >>> <<< POL(tl(x_1)) = [[1], [1]] + [[1, 1], [1, 1]] * x_1 >>> With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: hd(cons(X, Y)) -> X tl(cons(X, Y)) -> Y ---------------------------------------- (4) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(0, zeros) incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: nats: empty set adx: {1} zeros: empty set cons: empty set 0: empty set incr: {1} s: empty set ---------------------------------------- (5) CSRRRRProof (EQUIVALENT) The following CSR is given: Context-sensitive rewrite system: The TRS R consists of the following rules: nats -> adx(zeros) zeros -> cons(0, zeros) incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: nats: empty set adx: {1} zeros: empty set cons: empty set 0: empty set incr: {1} s: empty set Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(incr(x_1)) = x_1 POL(nats) = 1 POL(s(x_1)) = x_1 POL(zeros) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: nats -> adx(zeros) ---------------------------------------- (6) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: zeros -> cons(0, zeros) incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: adx: {1} zeros: empty set cons: empty set 0: empty set incr: {1} s: empty set ---------------------------------------- (7) CSRRRRProof (EQUIVALENT) The following CSR is given: Context-sensitive rewrite system: The TRS R consists of the following rules: zeros -> cons(0, zeros) incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: adx: {1} zeros: empty set cons: empty set 0: empty set incr: {1} s: empty set Used ordering: Polynomial interpretation [POLO]: POL(0) = 2 POL(adx(x_1)) = x_1 POL(cons(x_1, x_2)) = 0 POL(incr(x_1)) = 2*x_1 POL(s(x_1)) = 2 + x_1 POL(zeros) = 1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: zeros -> cons(0, zeros) ---------------------------------------- (8) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: adx: {1} cons: empty set incr: {1} s: empty set ---------------------------------------- (9) CSRRRRProof (EQUIVALENT) The following CSR is given: Context-sensitive rewrite system: The TRS R consists of the following rules: incr(cons(X, Y)) -> cons(s(X), incr(Y)) adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: adx: {1} cons: empty set incr: {1} s: empty set Used ordering: Polynomial interpretation [POLO]: POL(adx(x_1)) = 1 + x_1 POL(cons(x_1, x_2)) = x_1 POL(incr(x_1)) = 1 + x_1 POL(s(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: incr(cons(X, Y)) -> cons(s(X), incr(Y)) ---------------------------------------- (10) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: adx: {1} cons: empty set incr: {1} ---------------------------------------- (11) CSRRRRProof (EQUIVALENT) The following CSR is given: Context-sensitive rewrite system: The TRS R consists of the following rules: adx(cons(X, Y)) -> incr(cons(X, adx(Y))) The replacement map contains the following entries: adx: {1} cons: empty set incr: {1} Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(adx(x_1)) = [[0], [0]] + [[1, 1], [0, 0]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[0], [1]] + [[1, 1], [1, 1]] * x_1 + [[1, 1], [0, 0]] * x_2 >>> <<< POL(incr(x_1)) = [[0], [0]] + [[1, 0], [0, 0]] * x_1 >>> With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: adx(cons(X, Y)) -> incr(cons(X, adx(Y))) ---------------------------------------- (12) Obligation: Context-sensitive rewrite system: R is empty. ---------------------------------------- (13) RisEmptyProof (EQUIVALENT) The CSR R is empty. Hence, termination is trivially proven. ---------------------------------------- (14) YES