YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) QDPOrderProof [EQUIVALENT, 88 ms] (21) QDP (22) DependencyGraphProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) A__DIV(s(X), s(Y)) -> A__GEQ(X, Y) A__IF(true, X, Y) -> MARK(X) A__IF(false, X, Y) -> MARK(Y) MARK(minus(X1, X2)) -> A__MINUS(X1, X2) MARK(geq(X1, X2)) -> A__GEQ(X1, X2) MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) R is empty. The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A__GEQ(s(X), s(Y)) -> A__GEQ(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) R is empty. The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A__MINUS(s(X), s(Y)) -> A__MINUS(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) A__IF(true, X, Y) -> MARK(X) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) A__IF(false, X, Y) -> MARK(Y) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(s(X)) -> MARK(X) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. A__DIV(s(X), s(Y)) -> A__IF(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) MARK(s(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( A__DIV_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( A__IF_3(x_1, ..., x_3) ) = x_2 + x_3 + 2 POL( mark_1(x_1) ) = x_1 POL( minus_2(x_1, x_2) ) = 0 POL( a__minus_2(x_1, x_2) ) = 0 POL( geq_2(x_1, x_2) ) = 0 POL( a__geq_2(x_1, x_2) ) = 0 POL( div_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( a__div_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( s_1(x_1) ) = x_1 + 1 POL( a__if_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 POL( 0 ) = 0 POL( true ) = 0 POL( if_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 POL( false ) = 0 POL( MARK_1(x_1) ) = x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) a__if(false, X, Y) -> mark(Y) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__geq(X1, X2) -> geq(X1, X2) a__div(0, s(Y)) -> 0 a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__minus(X1, X2) -> minus(X1, X2) ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(div(X1, X2)) -> A__DIV(mark(X1), X2) A__IF(true, X, Y) -> MARK(X) MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) A__IF(false, X, Y) -> MARK(Y) MARK(if(X1, X2, X3)) -> MARK(X1) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(div(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) A__IF(true, X, Y) -> MARK(X) MARK(if(X1, X2, X3)) -> MARK(X1) A__IF(false, X, Y) -> MARK(Y) The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) The set Q consists of the following terms: mark(minus(x0, x1)) mark(geq(x0, x1)) mark(div(x0, x1)) mark(if(x0, x1, x2)) mark(0) mark(s(x0)) mark(true) mark(false) a__minus(x0, x1) a__geq(x0, x1) a__div(x0, x1) a__if(x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(if(X1, X2, X3)) -> A__IF(mark(X1), X2, X3) The graph contains the following edges 1 > 2, 1 > 3 *MARK(div(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 *MARK(if(X1, X2, X3)) -> MARK(X1) The graph contains the following edges 1 > 1 *A__IF(true, X, Y) -> MARK(X) The graph contains the following edges 2 >= 1 *A__IF(false, X, Y) -> MARK(Y) The graph contains the following edges 3 >= 1 ---------------------------------------- (25) YES